

Community Task Force Meeting #20

Members join meeting via WebEx link in calendar invite

> NOTE: Meeting is live to the public and recorded

Department of Community Services Transportation Division November 23, 2020

Using WebEx participation features

For WebEx tech support call or email Liz Stoppelmann: (916) 200-5123 Liz.Stoppelmann@hdrinc.com

Agenda

- 1. Welcome, Introductions & Housekeeping
- 2. Public Comment
- 3. Project Update
- 4. Menu of Bridge Types Review
- 5. Criteria Development
- 6. Open Discussion
- 7. Next Steps

Introductions and Roll Call

Community Task Force

- Amy Rathfelder, Portland Business Alliance
- Art Graves, Multnomah County Bike and Pedestrian Citizen Advisory Committee
- Dennis Corwin, Portland Spirit
- Ed Wortman, Community Member
- Frederick Cooper, Laurelhurst Neighborhood Emergency Team and Laurelhurst Neighborhood Association
- Gabe Rahe, Burnside Skate Park
- Howie Bierbaum, Portland Saturday Market
- Jackie Tate, Community Member
- Jane Gordon, University of Oregon
- Jennifer Stein, Central City Concern
- Marie Dodds, AAA of Oregon
- Neil Jensen, Gresham Area Chamber of Commerce

- Paul Leitman, Oregon Walks
- **Peter Englander**, Old Town Community Association
- Peter Finley Fry, Central Eastside Industrial Council
- Sharon Wood Wortman, Community Member
- Stella Funk Butler, Coalition of Gresham Neighborhood Associations
- **Susan Lindsay**, Buckman Community Association
- **Tesia Eisenberg**, Mercy Corps
- **Timothy Desper**, Portland Rescue Mission
- William Burgel, Portland Freight Advisory Committee

Public Comment

Bridge Type Selection Phase

Working Groups to support the CTF

Urban Design & Aesthetics	 Aesthetic / Urban Design insights per bridge type Recommendation on type selection evaluation criteria 	Dec 2
Bridge & Seismic	Technical bridge design differentiatorsSeismic performance findings	Dec 2020
Constructability	Construction methods and durationsRange of potential impacts	Jan 2021
Natural Resources	Impacts to natural resources	Mar 2021
Diversity Equity & Inclusion	Bridge option impacts to DEI principles	Jan 2021
Multi-Modal	 Technical input on the bridge uses, typical sections, and connections to the existing multi- modal networks 	Jan 2021
Historic/Cultural Resources	Impacts to historic and cultural resources	Nov 30

*CTF members invited to attend working group meetings as desired

Project Update

Urban Design and Aesthetics Working Group

Architectural and Urban Design Themes

- Portland Values
- Characteristics of Portland
- Physical Connectivity
- Visual and Experiential Connectivity
- Relationship to River
- Bridge Site and Location

Project Update

Urban Design & Aesthetics Working Group

- Menu of Bridge Types
- Bridge Aspirations and Opportunities

115' Wide

(Fixed)

(3) East Approach Span

650' Lone

425' Long

(2) Main River Span

(Movable)

TATAT

JEL-TH

(Fixed)

(1) West Approach Span

450' Long

84

84

5

Long-span Alternative: Representative Bridge Types

BRIDGE TYPE OPTION: Tied Arch examples

Torikai Ohas Bridge, Japan

Siuslaw River Bridge, Oregon

Tacony-Palmyra Bridge, Pennsylvania

Gateway Bridge, Michigan

BRIDGE TYPE OPTION: Cable Stayed examples

Chongging Expressway Bridge, China

Cooper River Bridge, South Carolina

Indian River Inlet Bridge, Delaware

Hastings Bridge, Minnesota

BRIDGE TYPE OPTION: Through Truss examples

Main Street Bridge, Florida

Triborough (Harlem River) Bridge, New York Tower Bridge, CA

Broadway Bridge, Oregon

Hawthorne Bridge, Oregon

MOVABLE SPAN: Bascule examples

South Park Bridge, Washington

Teregganu Bridge, Malaysia

Fore River Bridge, Massachusetts

Pont Jacques Chaban, Delmas

New Johnson St. Bridge, Canada

Manchester Millenium Bridge, England

Woodrow Wilson Bridge, Maryland

Goals and Objectives Stakeholder Input Agency Collaboration

Physical Constraints Design Criteria Context Sensitivity Budget Compliance Environmental Stewardship Agency / Stakeholder Input Criteria & Measures Development

Range of Feasible Options

Evaluation and

Screening

Preferred Bridge Type Preliminary Design Quantities Cost Estimate Construction Risk

Bascule Bridge Types

South Park Bridge, Washington

New Johnson St. Bridge, Canada

Woodrow Wilson Bridge, Maryland

Bascule Movable Bridge Type:

- Bascule Bridge Fundamentals
- Technically Feasible Options
- Technically "Challenged" Options

Bascule Type for the Burnside Bridge: "Delta Pier"

Key Attributes:

- Bascule Span:
 - "Split-leaf" (2 halves) type due to opening length
 - Support structure can be above or below deck
- Pier Locations: West and east of the existing piers to avoid foundation conflicts
- Pier Sizing: Needs to accommodate counterweight movements and machine room
- **Trunnion Placement:** Towards main channel span to reduce bascule leaf length
- Vessel Collision Protection: Likely requires a fender or dolphin system for large ships

Technically Feasible Bascule Option: Traditional Twin-Leaf Style

Existing Burnside Bridge

Technically Feasible Bascule Option: Rustic Style

Technically Feasible Bascule Option: Tower-framed Style

Technically Feasible Bascule Option: Modern Style

Technically Feasible Feature:

- Support struts / cables must be:
 - $\circ~$ Sized for large loads
 - Placed near exteriors of roadway deck

Technically Challenged Feature:

 May need twin bridges due to the larger Burnside Bridge width

Technically Feasible Bascule Option – Modern Style

Technically Feasible Feature:

- Above-deck members
- Bascule shape (partially open pit)
- Limited ability to suspend bike/ped walkway below deck

Technically Challenged Feature:

• ~300' single leaf needed for Burnside

Technically Feasible Types: Delta Pier Style

Technically Feasible Feature:

Bascule shape (Delta pier shape)

Technical Challenged Feature:

- Split-leaf (each bascule side split in half):
 - Bifurcates the roadway into narrower twin pieces, limiting flexibility for future lane alterations
 - Increases permit risk via a larger bridge footprint
 - Results in twice the mechanical and electrical equipment to construct, operate, and maintain

Lift Bridge Types

Fore River Bridge, Massachusetts

Pont Jacques Chaban, Delmas

Manchester Millenium Bridge, England

Lift Movable Bridge Type:

- Lift Bridge Fundamentals
- Technically Feasible Options
- Technically "Challenged" Options

Lift Type for the Burnside Bridge

Key Attributes:

- Lift Span: Support structure can be above or below deck
- Pier Locations: West and east of the existing piers to avoid foundation conflicts
- Pier Sizing: Needs to accommodate counterweight movements, machine room, and stairs
- Sheaves Placement: Towards main channel span to raise span

Lift Type: Single Tower versus Split Towers

Single Tower

Split Tower

Lift Span Type – "Girder" type is Technically Feasible

Burnside Bridge Cross Section of Lift Span (Below deck option)

Technically Feasible Lift Option: Modern Truss Tower Style

Technically Feasible Lift Option: Individual Tower Style

Technically Feasible Lift Option: Individual Tower Style

Technically Challenged Lift Option: Slender Steel Truss Towers

Why?

• Seismic resiliency requires a much more robust structural system

Technically Challenged Lift Option: Unrestrained cable lifting mechanisms

Why?

- Seismic resiliency requires a much more restrained structural system
- Bifurcates the into roadway into narrower twin pieces, limiting flexibility for future lane alterations
- Increases permit risk via a larger bridge footprint

Movable Bridge Span (Summary)

Technically Feasible Types

<u>Lift</u>

- Individual or strong truss tower
- Single or split towers

- Delta pier
- Twin leaf
- Rustic or modern style

Technically Challenged Types: "Swing" & other bridges with Unique Movements

Why?

- Requires more inriver piers or a larger turret on each side of the main navigation channel
- Expensive to construct, operate, and maintain

- Less safe than lift or bascule due to large motions over the river
- Longer opening times:
 - $\circ~$ To clear on-bridge and in-river users
 - $\circ~$ To rotate open and to close

Technically Challenged Types: Unique Movements

Movable Bridge Span (Summary)

Technically Feasible Types

<u>Lift</u>

- Individual or strong truss tower
- Single or split towers

- Delta pier
- Twin leaf
- Rustic or modern style

- Tied Arch
- Truss
- Cable Stayed

- Extradosed
- Suspension
- "Other"

Tied Arch Type

Bascule Span Configurations

Lift Options

Technically Feasible Tied Arch Option: Conventional Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Height variability (up to 15' on west side and 45' on eastside)
- Offers a variety of shapes and styles
- Arch Height from deck: ~85' (west side) and ~120' tall (east side)

- Impacts on views / openness
- May require cross-bracing

Technically Feasible Tied Arch Option: Conventional Style (Network cable)

Technically Feasible Tied Arch Option: Conventional Style (Open Rib)

Technically Feasible Tied Arch Option: Inclined and Cable Stiffened Style

Technically Challenged Tied Arch Option: Single Arch Rib Alignment

Why?

- Bifurcates the roadway into narrower pieces, limiting flexibility for future lane alterations
- For west approach at Naito Parkway, this requires more superstructure depth, causing insufficient vertical clearances below deck
- Subject to material type, increases seismic demands requiring larger in-water foundations
- Constructability challenges over I-5/I-84/UPRR

Truss Type

Main Street Bridge, Florida

Triborough (Harlem River) Bridge, New York Tower Bridge, CA

Broadway Bridge, Oregon

Hawthorne Bridge, Oregon

Bascule Span Configurations

Lift Options

Technically Feasible Truss Option: Conventional Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Cost effective
- Offers a variety of truss shapes
- Truss Height: ~60' (west approach) and ~95' tall (east approach)

- Impacts on views / openness
- Requires cross-framing (i.e., truss roof)

Technically Feasible Truss Option: Conventional Style

Technically Challenged Truss Options: Circular and Deck Truss Styles

Why for Circular?

- Unproven for seismic resiliency
- Expensive to construct and maintain
- Generally used for smaller-scaled bridges

Why for Deck Truss?

 Insufficient vertical clearances below deck (Waterfront Park and I-5/I-84/UPRR)

Cable Stayed Type

Indian River Inlet Bridge, Delaware

Cooper River Bridge, South Carolina

Bascule Span Configurations

Lift Options

Needle Goal Po

I Posts

Technically Feasible Cable Stayed Option: Conventional "Goalpost" Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Cost effective
- Offers a variety of cable stay shapes
- Tower Height: ~100' (west approach) and ~200' tall (east approach)

- Impacts on views / openness, especially on east side adjacent to The Yard building
- West Approach towers need to be located within Waterfront Park

Technically Challenged Cable Stayed Option: Single Tower

Why?

- Bifurcates the roadway into narrower pieces, limiting flexibility for future lane alterations
- Requires a deeper superstructure, resulting in insufficient vertical clearances at Naito Parkway
- Subject to material type, increases seismic demands requiring larger in-water foundations
- Constructability challenges over I-5/I-84/UPRR

Extradosed Type

Bascule Span Configurations

Lift Options

Technically Feasible Extradosed Option: Conventional "Goalpost" Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Offers a variety of tower shapes and cable patterns (similar to Cable Stayed option)
- Tower Height: ~50' (west approach) and ~100' tall (east approach)

- Heavier bridge requires larger foundations
- West Approach tower needs to be located within Waterfront Park
- Requires a deeper superstructure, causing insufficient vertical clearances below deck at Naito Parkway

Fixed Approach Bridge Types (Summary)

Technically Feasible Types

Tied Arch

- Arch height variability: ~85' tall (west side) and ~120' tall (east side)
- Conventional arch style can be with or without rib bracing
- Various arch inclinations but would require arch rib bracing or cable stiffening

Truss

- Truss height variability with ~60' tall (west side) and ~90' tall (east side)
- Conventional thickened towers
- Rustic, modern, or other styles applicable
- Requires truss bracing above

Fixed Approach Bridge Types (Summary)

Technically Feasible Types

Cable Stayed

- Two taller towers (~100' tall west side and ~200' tall east side)
- Variable tower inclinations and cable patterns

Extradosed

- Two moderately tall towers (50' west side and 100' east side)
- Thicker bridge deck
- Limited tower inclinations and cable patterns

Technically Challenged Type: Suspension (Anchored Type)

Key Technical Attributes:

 Suspension cables are anchored into the ground via "anchorage houses" or supports

- East anchorage placed in geotechnical hazard zone, requiring more mitigation
- Larger right of way impacts
- Uneconomical span lengths

Technically Challenged Type: Suspension (Self-anchored)

Key Technical Attributes:

• Utilizes lift towers to support approach spans

- Requires entire bridge to be supported by falsework during construction
- Expensive to construct

Technically Challenged "Other" Types: Wave Frame and Sail Blade Girder Types

Key Technical Attributes:

- Hybrid of truss, girder, and cable-supported structural elements
- Designed for slenderness and transparency
- Generally used for smaller-scaled bridges

- Unproven seismic resiliency
- Will likely need more girder lines due to the bridge width
- Expensive to fabricate, construct, and maintain

Fixed Approach Bridge Types (Summary)

Technically Feasible Types

Tied Arch

- Arch height variability: ~85' tall (west side) and ~120' tall (east side)
- Conventional arch style can be with or without rib bracing
- Various arch inclinations but would require arch rib bracing or cable stiffening

<image>

Truss

- Truss height variability with ~60' tall (west side) and ~90' tall (east side)
- Conventional thickened towers
- Rustic, modern, or other styles applicable
- Requires truss bracing above

Fixed Approach Bridge Types (Summary)

Technically Feasible Types

Cable Stayed

- Two taller towers (~100' tall west side and ~200' tall east side)
- Variable tower inclinations and cable patterns

Extradosed

- Two moderately tall towers (50' west side and 100' east side)
- Thicker bridge deck
- Limited tower inclinations and cable patterns

Questions / Break

Criteria Development

Evaluation Process - Steps in Getting to a Recommended Bridge Type

Criteria Development

Considerations: Prior Criteria + Working Group Input + CTF Interests and Values

Preview for Next Meeting and Homework

- Considering NEPA phase criteria
- Input from CTF conversations and breakout groups, and working groups
- Refining topics and criteria to reflect key differentiators
- Homework before Dec. 7 CTF meeting: Review table with draft evaluation criteria

Preview for Next Meeting

Next Steps

Upcoming CTF Meetings

• December 7:

- Review and discuss evaluation criteria and measures
- Range of feasible bridge types

• December 21:

- Finalize criteria and measures
- Confirm range of feasible bridge types

Open Discussion

Thank you!

