

Agenda

Battery Bus Technology King County Metro Case Study

- Announcement
- Fleet Plan

TriMet Feasibility Study

- Service Analysis
- Fleet Scenario Analysis
- Lifecycle Cost Analysis

Questions?

Battery-Electric Bus Market

- Battery-electric bus manufacturing and technology are still in their development stages, but they are progressing rapidly
- Currently, five agencies in the United States are operating 10 or more electric buses
- 38 agencies in the U.S. have at least one electric bus in service
- The industry is currently focusing mainly on 40-foot standard bus designs. Offerings in the 60-foot articulated bus category are still growing

Battery-Electric Bus Technology

SLOW-CHARGE

FAST-CHARGE

King County Metro Feasibility Study

KC Metro Commitment to Battery-Electric Buses

- A mix of slow-charge and fast-charge technology, along with some service adjustments, could make it possible for Metro to achieve a 100 percent battery-electric bus fleet.
- According to the fleet replacement plan, this could be achieved by 2034 under a 14-year replacement schedule or by 2036 under a 16-year replacement.

Equity Analysis Results

Red routes indicate high priority routes that operate near most vulnerable populations

TriMet Feasibility Study

Service Analysis

Purpose

- Battery-electric buses should be introduced into the bus network in a way that minimizes impacts on operations and service
- How does TriMet's service match the operational characteristics of new battery-electric buses?

Service Analysis Results

- Full transition by 2034 or 2036
- Fast Charge: 18% to 76% of TriMet's fleet— could be transitioned to fast-charge battery buses.
 - However, after further consideration of siting constraints and efficiency of charging infrastructure, it is likely that a smaller subset would be feasible to replace in the nearterm.
- Slow Charge: 59% to nearly 100% of TriMet's fleet— could be transitioned to slow-charge battery-electric buses.
 - Future scheduling must be designed to accommodate this charging structure to transition this percentage of the fleet.
- About 25% of the fleet (through 2024) could be accommodated by either fast or slow charge technology

TriMet Fiscal Analysis Costs by Category

Costs by category for **diesel fleet** scenario

Costs by category for **electric bus fleet** scenario

(50/50 Fast/Slow Mix)

TriMet Costs Over Time

Cumulative Net Cost or Savings of Choosing Electric Fleet over Diesel Fleet

TriMet Electric Bus Net Savings

Including Social Costs – Global Cost Comparison

TriMet Electric Bus Cost Differences

- Fuel use savings of \$240 million
- Maintenance savings of \$70 million to \$314 million
- Clean fuel credit savings of \$65 million to \$195 million
- RIN credit savings of \$107 million
- Electricity use addition of \$120 million to \$133 million
- Charger infrastructure addition of \$64 million to \$151 million
- Vehicle purchase addition of \$326 million to \$547 million

All costs are shown in 2018 dollars.