

Consulting Parties Advisory Group

Meeting #3 – July 12, 2024

Review Topics from Meeting #2

- Endorsed the Advisory Group Charter
- Reviewed examples and discussed options for: \bullet
 - Interpretive Displays
 - Salvage and Reuse
 - 3-D Scan
- Discussed timing of NHL District and west side design discussions

Review Work Plan and Schedule

March 2027 - April 2028

Book Update Wikipedia Entry Oregon Encyclopedia Entry

Review Work Plan and Schedule

	2024				2025				2026				2027				2028				2029				2030				2031			
	Q1	Q2	Q3	Q4																												
Salvage and Reuse																																
New Bridge Components in NHL																																
Interpretive Displays																																
3D Scan																																
Video Documentation																																
Documentation																																
Archival Records																																
Publication																																
3D Model																																
Public Event																																
Wikipedia Entry																																
OR Encyclopedia Entry																																
Book Update																																

Planning

Procurement

Implementation

Focus for Meeting #3 Design Related Mitigation Items

Consulting Parties Advisory Group

7/12/2024

Interpretive Displays

Programmatic Agreement Guidelines

Multnomah County shall contract with an experienced firm for the graphic design, display design, and fabrication of three (3) permanent outdoor interpretive displays, consisting of not more than two (2) panels each depicting the Burnside Bridge and its history and significance, including the bridge's social and civic importance. Multnomah County shall install the panels on the new Burnside Bridge. These panels may either be identical in content or encourage users to explore different aspects of the area's history. Multnomah County shall install the interpretive panels no later than the time of bridge opening and shall maintain the panels for a minimum of 10 years in the event the displays are vandalized or weather prematurely.

Theme #1: Before the Burnside Bridge

Possible topics under this theme:

- Precontact: how Indigenous peoples used the Willamette River before non-Indigenous peoples arrived.
- Postcontact: how Indigenous and non-٠ Indigenous peoples used the Willamette River before the Burnside Bridge was built.
- Postcontact: why a bridge at this location was needed after non-Indigenous peoples founded Portland and the city expanded.

1841 approximate location of the Burnside Bridge indicated. Source: Wilkes 1858: Sheet No. 7

Theme #1: Before the Burnside Bridge

of the Burnside Bridge. Source: GLO 1852

1852 GLO plat with approximate location

Theme #2: History of the Burnside Bridge

Possible topics under this theme:

- First Burnside Bridge at this location and why it was replaced.
- Design and construction of the second Burnside Bridge.
- Designer of the second Burnside Bridge.
- Bascule operation of the second Burnside
 Bridge: why it opens and how it opens.
- Why the second Burnside Bridge is such a significant and notable work of engineering.

Photo taken from waterfront. Source: Portland Archives, 1926

Theme #2: History of the Burnside Bridge

Photo looking north. Source: Portland Archives, 1926

Theme #2: History of the Burnside Bridge

Burnside Bridge with bascule spans open and a ship is passing through. Source: Portland Archives, 1926

Theme #3: Social Importance of the Burnside Bridge

Possible topics under this theme:

- Automobiles, Buses, and Streetcars: Crossing the Burnside Bridge, 1924 to 2027.
- Events: Rose Parade, protests, and demonstrations.
- Burnside Bridge in art and photography.
- Burnside Bridge in popular culture and public memory.
- Construction and use of the Burnside Skatepark
- Continual use of the Willamette River by Indigenous peoples as a fishery.

Portland Protest #2, June 2, 2020 Source: Andrew Wallner

Theme #3: Social Importance of the Burnside Bridge

Parade on Burnside Bridge. Source: OHS, Oregon Journal

7/12/2024

Theme #4: Geology and Seismic

Possible topics under this theme:

- Seismic fault lines in the region
- Precontact seismic events from geologic and Indigenous peoples' perspectives.
- Postcontact seismic events since the arrival of non-Indigenous peoples.
- Soil conditions in the vicinity of the Burnside Bridge.
- Why the replacement Burnside Bridge must be seismically resilient.

Soils under Burnside Bridge Source: Shannon & Wilson, Inc.

Theme #4: Geology and Seismic

Frequency and Magnitude of CSZ Earthquakes (Oregon Live)

What makes a successful interpretive display?

Design

- Lead with a thematic statement. \bullet
- Graphics, such as drawings, maps, or photographs to fill in details. ۲
- Small amounts of text (150-200 words), with bold headings, drop capitals, and quotations. ۲
- Strong contrast of graphics with the background. •
- Reading comprehension at a 6th grade level. ۲

Accessibility

- Strong contrast of graphics with the background. •
- Audio. •
- Braille and other tactile elements. \bullet

Durability

Durability

- Porcelain enamel, high pressure laminate, direct-print aluminum, etched stainless steel or aluminum •
- Last for over a decade •
- Easy to clean from paint, markers, stickers, etc.

Consulting Parties Advisory Group

7/12/2024

Sellwood - installed 2015 Source: SeaReach

Accessibility

An example of Braille superimposed on a historic map. Source: Engraphix Architectural Signage, Inc., https://www.engraphix.com/portfolio/ missouri-history-museum-coloring-stlbraille-interpretive-exhibit/

Durability

An interpretive display with a durable stone and steel base and an aluminum information panel etched with an architectural plan and descriptive text. Source: Courtesy Aluma Photo-Plate Company, <u>https://www.alumaphoto-</u> <u>plateco.com/products/interpretive-signage.html</u>

Example: Hanapēpē River Bridge, Kaumuali'i Highway, Kaua'i, Hawai'i

Interpretive display in Hanapēpē Community Park (Hanapēpē, Kaua'i County, Hawai'i) memorializes the history of the former Hanapēpē River Bridge on Kaumuali'i Highway on Kaua'i." Example of an interpretive display integrated with a salvaged section of historic bridge railing. Source: Courtesy of Historic Hawai'i Foundation, <u>https://historichawaii.org/2023/06/22/hanapepebridge</u> <u>replacement</u>

Example: Columbia River Gorge National Scenic Area

WARRENDALE

"TITANIC FRANK'S" Columbia legacy

After many years of harvesting on the Columbia, Warren realized the need to bolster salmon production. He was an early proponent of hatcheries to augment salmon runs.

NA VIEWS

Fish wheel near Warren Packing Company cannery

ROM THE 1870S TO the 1930s, the Columbia River was the lifeblood of a regional fishing and canning industry. The big,

untamed river churned as fish wheels scooped millions of pounds of salmon from the currents. Riverside canneries belched steam and smoke as laborers processed the fish and packed the cans that carried Columbia River salmon throughout the world.

At the industry's leading edge was Portland entrepreneur Frank M. Warren (1848-1912), whose Warren Packing Company cannery was located here at Warrendale. At its peak, Warren's company operated up to 14 fish wheels—about a third of the total number along the Columbia. The cannery employed as many as 150 people, most of them Scandinavians and Chinese.

Immigrants provided much of the labor in the Columbia River canneries. The many buildings of the Warren Packing Company cannery are long gone. All that remains are rotting timber piling along "blood beach"—so named for the red sand, stained by the rusting scraps of millions of salmon cans.

An example of an interpretive display from the Columbia River Gorge National Scenic Area. Source: Courtesy Bob Hadlow, ODOT

Example: Sellwood Bridge

WHEN THE FIRST SELLWOOD BRIDGE was built, it put a ferry out of business. From 1904 to 1925, the John F. Caples shuttled hundreds of passengers and vehicles across the river each day. Its old landings can still be seen today: on the east side at the end of Spokane Street, and on the west side near the old Staff-Jennings boat yard.

PANNING THE DECADES

In Portland's early days, ferries were the only way to cross the Willamette. When the first bridges appeared, boats still had the rightof-way - the bridges were designed to lift or swing out of the way.

Henry Ford's first Model T hit the road in 1908. Within a decade the Portland streets were packed with chugging motorcars. As traffic on the river slowed, traffic above the river exploded. Bridges were more important than ever-and there weren't enough of them.

In 1922, Multnomah County passed a bond measure for a massive project to modernize Portland's interface with the Willamette. The project included three major bridges, one of which was to cross here at Sellwood.

The Sellwood Bridge, completed in 1925, was the first Willamette bridge to be designed almost exclusively for cars. It had two auto lanes and—unusual for this era—no streetcar tracks. Built high enough over the river to allow boats to pass underneath, it was also the first fixed bridge in the city.

THE OLD BRIDGE

An interpretive display for the Sellwood Bridge in Portland. Source: Courtesy Bob Hadlow, ODOT

Example: Historic American Engineering Record (HAER) drawings

Example of Historic American Engineering Record (HAER) drawings, which could be incorporated into one of the interpretive display panels. Source: Courtesy Library of Congress

Questions

- What themes do you feel are the most important?
 - **1 Before the Burnside Bridge**
 - 2 History of the Burnside Bridge
 - **3 Social Importance of the Burnside Bridge**
 - 4 Geology and Seismic
- Which topics within each theme do you feel are the most important?

Theme #1: Before the Burnside Bridge Possible topics under this theme:

- Precontact: how Indigenous peoples used the Willamette River before non-Indigenous peoples arrived.
- Postcontact: how Indigenous and non-Indigenous peoples used the Willamette River before the Burnside Bridge was built.
- Postcontact: why a bridge at this location was needed after non-Indigenous peoples founded Portland and the city expanded.

Theme #2: History of the Burnside Bridge

Possible topics under this theme:

- First Burnside Bridge at this location and why it was replaced.
- Design and construction of the second Burnside Bridge.
- Designer of the second Burnside Bridge.
- Bascule operation of the second Burnside Bridge: why it opens and how it opens.
- Why the second Burnside Bridge is such a significant and notable work of engineering.

Theme #3: Social Importance of the Burnside Bridge

Possible topics under this theme:

- Automobiles, Buses, and Streetcars: Crossing the Burnside Bridge, 1924 to 2027.
- Events: Rose Parade, protests, and demonstrations.
- Burnside Bridge in art and photography.
- Burnside Bridge in popular culture and public memory.
- Construction and use of the Burnside Skatepark
- Continual use of the Willamette River by Indigenous peoples as a fishery.

Theme #4: Geology and Seismic

Possible topics under this theme:

- Seismic fault lines in the region
- Precontact seismic events from geologic and Indigenous peoples' perspectives.
- Postcontact seismic events since the arrival of non-Indigenous peoples.
- Soil conditions in the vicinity of the Burnside Bridge.
- Why the replacement Burnside Bridge must be seismically resilient.

Salvage and Reuse

Salvage and Reuse

Programmatic Agreement Guidelines

Multhomah County shall explore options for salvage and reuse of existing features of the Burnside Bridge, including railings, mechanical components, and the operator towers.

Existing Example of Salvage

Original Burnside Bridge Control Panel – Housed at ODOT

Portrait of John Frenette, chief operator on Burnside Bridge, 1956 Source: OHS

Consulting Parties Advisory Group

Bridge Elements

1 - Operator Tower

Entire Operator Tower (as a whole)

Red Terracotta Roof (Terracotta Tile Shingles over Steel Frame with Concrete Slab)

Green Architectural Operators Quarters (Glass Windows and TerraCotta Tiling)

Beige Architectural Tower (Cement Stucco over Terra Cotta Walls)

Walking balcony

2 - Metal Bridge Railing

3 - Concrete Bridge Railing

Individual balustrades

Balustrade panel

Transition units

4 - Steel Structural Components

Individual rivets / bolts

Truss portions (at joints)

5 - Historic Name Plate

6 - Mechanical Components

Motors and gears (i.e., machinery housed in mechanical room)

Interior trunnion tower

Pinion rack

7 - Douglas Fir Piling

Piling from starling

Piling from below foundations

Consulting Parties Advisory Group

7/12/2024

Salvage Operator Tower

Consulting Parties Advisory Group

7/12/2024

Metal Bridge Railings

Consulting Parties Advisory Group

7/12/2024

Salvage

Concrete Bridge Railings

Consulting Parties Advisory Group

7/12/2024

Salvage

Steel Structural Components

Approach Truss Node

Consulting Parties Advisory Group

7/12/2024

Salvage

Steel Structural Components

Bascule Span Node

Consulting Parties Advisory Group

7/12/2024

Steel Structural Components - Rivets / Bolts

Consulting Parties Advisory Group

Mechanical Components - Trunnion Tower

Consulting Parties Advisory Group

7/12/2024

38

Mechanical Components - Pinion Rack

Consulting Parties Advisory Group

7/12/2024

Mechanical Components - Gears

Consulting Parties Advisory Group

7/12/2024

Name Plate

Consulting Parties Advisory Group

7/12/2024

41

Potential Salvage Components					Level of Effort	Risk of Damage
Very Low	Low	Moderate	High	Very High	Infeasible	
1 - Operator	r Tower					
Entire Operator Tower (as a whole)						
Red Terracotta Roof (Terracotta Tile Shingles over Steel Frame with Concrete Slab)						
Green Architectural Operators Quarters (Glass Windows and TerraCotta Tiling)						
Beige Architectural Tower (Cement Stucco over Terra Cotta Walls)						
Walking balcony						
2 - Metal Br	idge Railing					
3 - Concrete	e Bridge Railin	g				
Individual balustrades						
Balustrade panel						
Transition units						
4 - Steel Str	uctural Compo	onents				
Individual rivets / bolts						
Truss portions (at joints)						
5 - Historic Na	ame Plate					
6 - Mechani	cal Componen	ts				
Motors and gears (i.e., machinery housed in mechanical room)						
Interior trunnion tower						
Pinion rack						
7 - Douglas	Fir Piling					
Piling from s	starling					
Piling from I	below foundations					

Consulting Parties Advisory Group

42

Salvage and Reuse

National Endowment for the Arts (NEA) Grants

- Award range: \$10,00-\$100,000
- Require 1:1 cost/share matching funds
- Some require partnering with nonprofits that have a history of arts programming
- Can apply twice per year

Questions

• What is your top priority to salvage?

3-D Scanning

3-D Scanning

Programmatic Agreement Guidelines

Multnomah County shall make a three-dimensional scan of the Burnside Bridge available to Consulting Parties and the public through the County website and upon request during construction. Upon completion of the Project, Multnomah County shall archive the data in the County's permanent electronic records management system.

3-D Scanning

- There are several vendors who do 3-D scanning and we will invite them to tour the bridge and describe their services
- It is possible to scan the machinery and counterweight inside of the bridge

nd we will vices ight inside of the

Discussion - Questions

Consulting Parties Advisory Group

Next Steps

Current Project Status

- Bridge Type Survey
- Public Outreach

September 13th meeting:

- Research and planning results
- Draft scopes for procurement
- More input from Advisory Group

Reminder for Input:

Email to EQRB-Consulting-Parties@multco.us

Materials Website

https://www.multco.us/earthquake-ready-burnside-bridge/consulting-parties-advisorygroup-meeting-materials

