

Cable-stayed Bridge No Ground Improvement Performance Study Memorandum

Multnomah County | Earthquake Ready Burnside Bridge Project

Portland, OR

November 10, 2023

Contents

1	Mem	orandum Purpose and Recommendations1	1
2	Evalu	ation Approach2	2
	2.1	Summary of Approach	2
	2.2	LARSA Model	2
	2.3	CSiBridge Model	3
3	Desig	gn and Performance Criteria	7
	3.1	General7	7
	3.2	Load Combinations7	7
	3.3	Lateral Spread Loading7	7
	3.4	Live Loading	3
	3.5	Limited Permanent Deformation	9
	3.6	Stay Cables 10)
	3.7	Steel Edge Girders)
4	Study	/ Findings10)
	4.1	Tower10)
	4.2	Roadway Vertical Profile11	1
	4.3	Edge Girders 12	2
	4.4	Stay Cables	3
	4.5	Drilled Shafts	3
	4.6	Miscellaneous Items14	1
	4.7	Summary of Findings	5
5	Quan	tity / Cost Impacts	5
6	Conc	lusion17	7
7	Refe	rences	3

Tables

Table 1: LODE Strain Criteria (SDC Section 8.2.3, Ta	able 5)9
--	----------

Figures

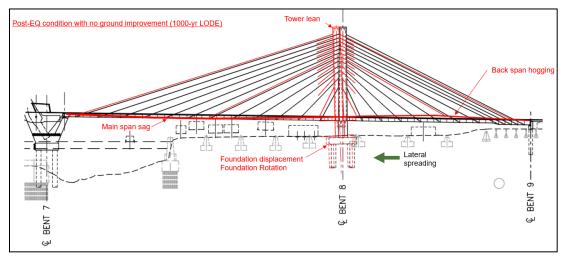
Figure 1: Lateral Spreading Effects	1
Figure 2: LARSA 4D Model	
Figure 3: CSiBridge Model	
Figure 4: Free Field Ground Displacement	
Figure 5: Post-EQ Live Load (BDC Section 3.4)	8
Figure 6: EV2 Truck Axle Loads	8

Figure 7: EV3 Truck Axle Loads	9
Figure 8: Tower Bending Moment	11
Figure 9: Superstructure Vertical Displacement	12
Figure 10: Edge Girder Demand / Capacity Ratios	13
Figure 11: Bent 8 Drilled Shaft Comparison	14
Figure 12: Quantities and Estimate with Ground Improvement	16
Figure 13: Quantities and Estimate Without Ground Improvement	17

Appendices

Appendix A. Cable-Stayed Bridge Plans	A-	1
---------------------------------------	----	---

Memorandum Purpose and Recommendations


The purpose of this study was to gain a better understanding of the effects of lateral spreading on the performance of the cable-stayed approach spans following the Limited Operation Design Earthquake (LODE), and to provide a recommendation if ground improvement should be included in the Earthquake Ready Burnside Bridge (EQRB) Project's Final Design Phase Conceptual Design Data (CDD) submittal.

Additionally, the study was conducted to identify the need for possible structural mitigation measures to reduce residual bridge displacements or improve post-earthquake (EQ) performance and develop updated conceptual quantities and an engineer's estimate.

Lateral spreading without mitigating ground improvement will cause lateral deflection and rotation of the bridge foundation which results in rotation of the bridge tower and deflection in the bridge superstructure as schematically shown in Figure 1. The displacement and rotation shown creates secondary structural effects that can be problematic and must be studied to ensure the bridge can meet project performance requirements to carry emergency vehicles immediately after the LODE and full live load within two weeks.

Figure 1: Lateral Spreading Effects

1

The recommendations from this study are as follows:

 Elimination of ground improvement for the cable-stayed tower foundation (Bent 8) is recommended. For the CDD submittal, eliminate the cost of ground improvement and include the cost of up-front additional materials to account for slightly higher loads due residual to bridge displacements. This results in an estimated net savings of \$28.3 million in programmatic costs and is anticipated to reduce construction risk associated with installation of ground improvement.

2. Post-EQ stay cable adjustments, and their associated costs, are not warranted for structural purposes. Preliminary discussion of results with roadway designers also indicates that cable adjustments are not warranted to re-establish the roadway profile. Findings show that the bridge can carry full HL93 live load without corrective stay cable adjustments (with some up-front strengthening). Additionally, the EQRB Basis of Design Memorandum: Post-Earthquake Emergency Response and Haul Vehicles Design Assessment (Multnomah County 2023) states there is an opportunity to define a heavy haul truck-train that is equal to or less than full HL93 live load. Coupling the findings of these two documents then results in a finding that the bridge can carry those heavy haul truck-trains without corrective stay cable adjustments after the LODE.

2 Evaluation Approach

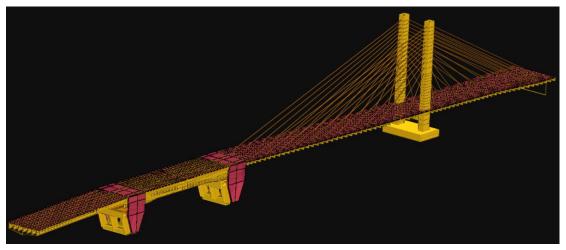
2.1 Summary of Approach

Based on the behavior shown in Figure 1, the following items were investigated to meet study objectives and ensure the bridge will safely carry live loads in its post-EQ condition:

- Consideration of second order / p-delta effects in the tower legs resulting from permanent displacement and rotation of the shaft cap.
- Evaluation of the cable-stayed structure's ability to immediately carry live loads associated with emergency vehicles (EV2 and EV3) post-EQ without any corrective stay cable adjustments. This includes evaluating the towers, roadway vertical profile, edge girders, stay cables, and drilled shafts.
- Evaluation of the cable-stayed structure's ability to carry full HL93 live loads post-EQ after corrective stay cable adjustments (if necessary). This includes evaluating the towers, roadway vertical profile, edge girders, stay cables, and drilled shafts.

The comparative cost estimate is calculated as the difference between the following items:

- Cost of structural strengthening without ground improvement.
- Cost of ground improvement.

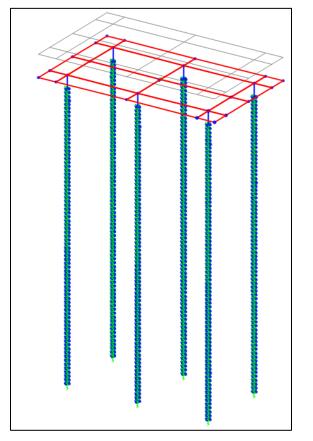

2.2 LARSA Model

A structural analysis model was developed in LARSA 4D to determine load effects on all the structural elements studied, except for the drilled shafts which were determined using a CSiBridge model (discussed in Section 2.3). The LARSA 4D model is shown in Figure 2.

The LARSA model has cable stay member properties consistent with the member geometry shown in the September 2022 conceptual drawings provided as part of the National Environmental Policy Act (NEPA) phase of the project, also provided in Appendix A.

Figure 2: LARSA 4D Model

2.3 CSiBridge Model


A model was developed in CSiBridge to model the displacement of the foundations due to lateral spreading displacement of the soil. The results of the model were used to determine the displacement and rotation of the cable-stayed tower foundation, and to evaluate the load effects on the drilled shaft foundations.

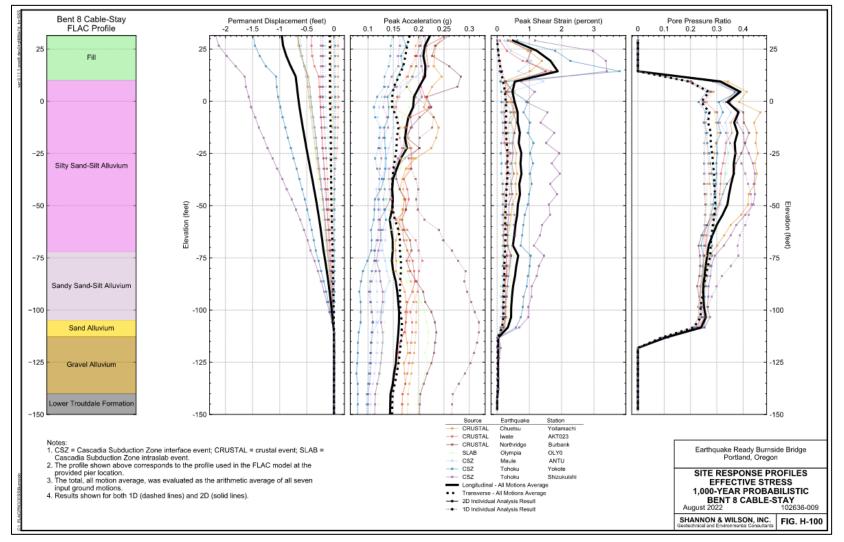
The CSiBridge model used a bounded approach to account for the stiffness of the cablestayed bridge that is integral with the shaft cap. Specifically, the CSiBridge model considered two conditions: a rigid cap/shaft connection and free cap condition.

The CSiBridge model is shown in Figure 3.

Figure 3: CSiBridge Model

The CSiBridge model includes discrete foundation elements for each drilled shaft and shaft cap. P-y (lateral), t-z (vertical side friction), and q-z (vertical end bearing) soil springs are attached along the height of each drilled shaft. P-y and t-z springs are attached at two-foot intervals, and a single q-z spring is attached at the base of each drilled shaft. A single p-y spring was applied to the buried shaft cap. Soil springs are consistent with the information provided for liquefied soil conditions (effective stress) provided in the *EQRB Final Preliminary NLTH Geotechnical Report* (GER) (Multnomah County 2022a). Group multipliers were also applied to the soil springs, and are consistent with recommendations provided in the GER.

Lateral displacement loading was applied to the drilled shaft and shaft cap by displacing the ground node end of the p-y spring elements a distance equal to the free-field soil displacement for "Longitudinal - All Motions Average" shown in Figure H-100 from the GER and shown in Figure 4. For reference, the All Motions Average free-field displacement shown in Figure H-100 is approximately 11.5 inches at the ground line. Note that free-field soil displacements, which were developed in the finite difference program FLAC, disregard any resistance provided by the foundation elements themselves, providing a conservative upper bound of soil displacements.


As the potential permanent rotation of the tower shaft cap will result in negative structural effects (additional bending in superstructure and tower), the spring values in the CSiBridge model were selectively modified to achieve conservative (upper bound) shaft cap rotations to suit the purposes of this study. Spring modifications included increasing the shaft cap lateral p-y spring by a factor of 10 and decreasing the shaft axial q-z spring

by a factor of 10. Both of these modifications result in increased cap rotation, and as a result cap rotations used in this study are approximately double what is anticipated (compared to unmodified p-y and Q-z springs).

Figure 4: Free Field Ground Displacement

Multnomah County. December 2022. EQRB Final Preliminary NLTH Geotechnical Report (unpublished). Appendix H, Figure H-100.

3 Design and Performance Criteria

3.1 General

The criteria used to evaluate the performance of the cable-stayed bridge without ground improvement is consistent with the following two documents:

- EQRB Revised Bridge Design Criteria Report (BDC) (Multnomah County (2022b).
- EQRB Revised Seismic Design Criteria Report (SDC) (Multnomah County 2022c).

Only effects associated with the LODE are evaluated in this study.

Consistent with SDC Section 3.1 and 3.2.2, the following are anticipated for the LODE:

- Damage is repairable but may impact traffic for up to two weeks.
- Limited permanent deformation may occur.

Geotechnical data used for this study is consistent with the following document:

• EQRB Final Preliminary NLTH Geotechnical Report (GER) (Multnomah County 2022a).

3.2 Load Combinations

The Strength I and Strength II Limit State Load Combinations, as defined in the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design Bridge Design Specifications (adopted by the BDC), are used for evaluation in this study.

The Strength II Limit State Load Combination is applied to the following post-EQ condition:

• Post-EQ structure, prior to corrective stay cable adjustments.

The Strength I Limit State Load Combination is applied to the following post-EQ condition:

Post-EQ structure, after corrective stay cable adjustments (if adjustments are necessary)

Note that the scope of this study is limited to permanent ground displacement effects. Previous preliminary analysis during the NEPA phase of this project indicates that load combinations of inertial + lateral spreading effects can be accommodated without ground improvement.

3.3 Lateral Spread Loading

The effects of the foundation movements on the bridge, due to lateral spreading, are classified as "SE" loads in regard to load factors used in load combinations. The load

factor for γ_{SE} specified in AASHTO Table 3.4.1-5 shall be taken as 1.00, consistent with load factors for γ_{SE} for lateral movement.

3.4 Live Loading

The following two live load conditions are assumed in this study:

- Emergency service vehicles in reduced traffic lanes on the post-EQ structure prior to corrective stay cable adjustments, consistent with SDC Section 8.2 and BDC Section 3.4.
- Full HL93 Live Load on the post-EQ structure after corrective stay cable adjustments (if adjustments are necessary), consistent with BDC Section 3.4.

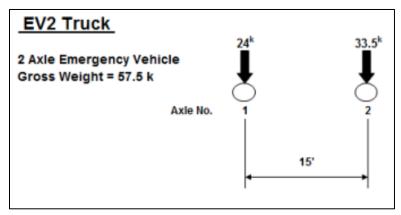

The post-EQ condition is evaluated based on the EV2 and EV3 vehicles, defined in, and consistent with BDC Section 3.4 and shown in Figure 5.

Figure 5: Post-EQ Live Load (BDC Section 3.4)

Following a seismic event, it is expected that the Burnside Bridge will be used by heavy emergency vehicles. Post-seismic operational performance of the bridge would be established using load rating provisions for up to two loaded lanes of EV2 and EV3.

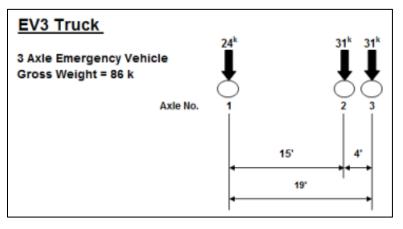

See Figure 6 and Figure 7 for EV2 and EV3 axle loading. Note that lane loads (e.g., HL93 Design Lane Load) are not considered to be present with the EV2 and EV3 loads.

Figure 6: EV2 Truck Axle Loads

Figure 7: EV3 Truck Axle Loads

3.5 Limited Permanent Deformation

Limited permanent deformation is acceptable, in accordance with SDC Section 3.1.

The allowable limited permanent deformation is evaluated by comparing the reinforcing steel strain demand in the tower legs and drilled shafts to allowable reinforcing steel strain as defined in the SDC.

The tower legs are limited to strain associated with yield, consistent with other typical Strength Limit State Load Combinations defined in AASHTO.

The drilled shafts are anticipated to undergo larger displacements due to the lateral translation of the foundations associated with lateral spreading of the soil. The drilled shafts, at the Strength Limit State, will be limited to the strains listed in SDC Section 8.2.3 Table 5: repeated in Table 1 below.

Table 5. LODE Strain Criteria								
Element	Limited Operation Design Earthquake (LODE)							
Moderate Inelastic Components (Concrete Columns)	$\epsilon c = \epsilon c u \text{ (confined)}$ $\epsilon s = 0.80 \times \epsilon \text{ bar buckling}$							
Minimal Inelastic Components (Drilled Shafts, Cable Stay Tower, Moveable Substructure)	εc = εcu (confined) εs = 0.015							
es = 0.015 is in accordance with Serviceabil Displacement-Based Seismic Design of Str	ity Limit Tension Strain discussed by Priestly, Calvi, Kowalsky in uctures"							

Table 1: LODE Strain Criteria (SDC Section 8.2.3, Table 5)

The reinforcing steel strain comparison is checked for the following two conditions:

- Post-EQ structure, prior to corrective stay cable adjustments, with EV2 and EV3 vehicles in two traffic lanes concurrently.
- Post-EQ structure, after corrective stay cable adjustments (if necessary), with HL93 live load.

3.6 Stay Cables

The stay cables are evaluated based on capacity limits defined in *DC45.1-18: Recommendations for Stay Cable Design, Testing, and Installation* (PTI 2018).

The stay cables are checked for the following two conditions:

- Post-EQ structure, prior to corrective stay cable adjustments, with EV2 and EV3 vehicles in two traffic lanes concurrently.
- Post-EQ structure, after corrective stay cable adjustments (if necessary), with HL93 live load.

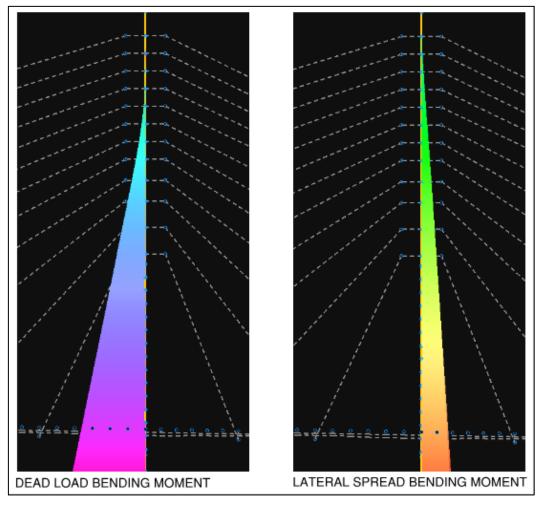
3.7 Steel Edge Girders

The steel edge girders are evaluated in accordance with SDC Section 6.4, which limits the structural steel capacity of the steel edge girders to elastic capacity.

The steel edge girders are checked for the following two conditions:

- Post-EQ structure, prior to corrective stay cable adjustments, with EV2 and EV3 vehicles in two traffic lanes concurrently.
- Post-EQ structure, after corrective stay cable adjustments (if necessary), with HL93 live load.

4 Study Findings


4.1 Tower

This study finds that the towers do not experience problematic permanent displacement and/or rotation. The tower legs translate laterally with the shaft cap approximately ten inches. Base of tower rotations caused by shaft cap rotation are minimal, even with modified soil parameters, and result in additional deflections of approximately one inch at the top of the tower.

The foundation rotation created by lateral spreading causes bending moments opposing those of permanent loads (e.g., dead load), as illustrated in Figure 8. A similar response is found for the shear demands. Increases in tower reinforcement or changes to the cross-sectional dimensions of the tower are not required as a result.

Figure 8: Tower Bending Moment

Targeted demand/capacity ratios are 0.85 for the towers. As described in the previous paragraph, the bending/shear demands in the tower are actually reduced with lateral spreading, and the tower demand/capacity ratios improve as a result.

These findings are applicable to the tower geometry studied (see Appendix A). Other tower geometry may not result in the same findings. For example, canted tower legs (e.g., V-shaped tower) are more susceptible to second-order effects, and these findings may not be applicable.

4.2 Roadway Vertical Profile

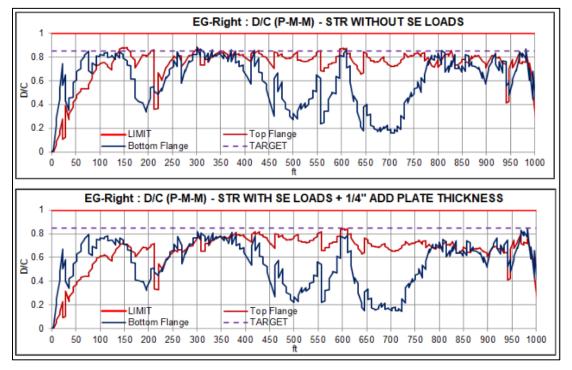
Superstructure vertical displacements resulting from lateral spread loading were also investigated. These displacements are shown in Figure 9 which shows a maximum sag displacement of approximately two inches in the main span and a maximum hogging displacement of approximately one inch in the back span, based on the conservative foundation rotation considered.

These displacements are not detrimental structurally and are not anticipated to be problematic with respect to roadway profile or drainage, but this needs to be verified. It is possible that additional drainage inlets may be necessary to adequately drain the

structure when considering the permanent displacements; this will be further studied in Final Design.

In addition, sag in the main span will cause rotation and possibly an associated grade break at the bascule pier joint equal to approximately 0.08%. This grade break is minimal and can be addressed quickly following the LODE, if required, before fully opening to all traffic.

Figure 9: Superstructure Vertical Displacement


1.50											
0.50									****		*******
0.00	620	0 63	64	00 65	00 6	600 67	00 68	00 65	00 70	00 7	00 1
-1.00	T	a a a a a a a a a a a a a a a a a a a									
-1.50					*****						
-2.50						STATION					

4.3 Edge Girders

The steel edge girders were found to adequately carry the specified emergency vehicles in the Strength II Limit State without need for modification and need only minor increases in material quantity to carry full HL93 live load in the Strength I Limit State without cable adjustments.

Targeted demand/capacity ratios are 0.85 for the edge girders, with SE loading (without ground improvement) and without SE loading (with ground improvement). This study finds that increasing the thickness of the edge girder top and bottom flanges by one quarter inch is sufficient to carry full HL93 live load in the Strength I Limit State without cable adjustments. Note that one quarter inch was assumed as a conservative and practical minimum for this study. The calculated increase in thickness was found to be less than this amount. Figure 10 shows demand/capacity ratios with and without SE loading.

Figure 10: Edge Girder Demand / Capacity Ratios

The change in material quantity is provided in Section 5.

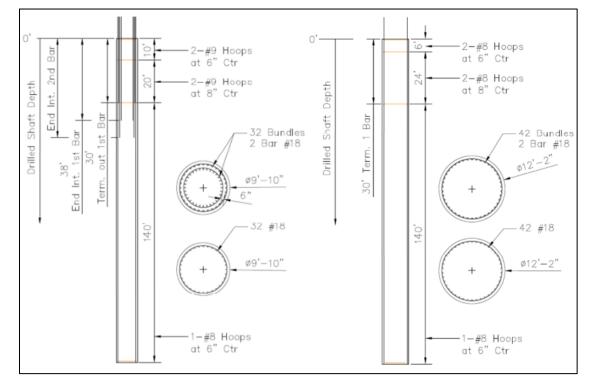
4.4 Stay Cables

The Stay Cables were found to adequately carry the specified emergency vehicles in the Strength II Limit State without need for modification and need only minor increases in material quantity to carry full HL93 live load in the Strength I Limit State.

Targeted demand/capacity ratios are 0.85 for the stay cables, with SE loading (without ground improvement) and without SE loading (with ground improvement). This study finds that 28 of the 48 cables on the bridge would need additional strands to accommodate SE loading without ground improvement. Of the 28 cables needing additional strands, only 4 of them need 2 strands. The remaining cables need one additional strand.

The change in material quantity is provided in Section 5.

4.5 Drilled Shafts


Without ground improvement, the 10-foot diameter drilled shafts were found to need increases in material quantity associated with adding additional reinforcement. Changes in shaft diameter, spacing, and number were not found to be required. However, the post-EQ demand/capacity ratios are relatively high, approximately 0.90. This demand/capacity ratio is higher than desirable at this level of design. In addition, the required reinforcement density is high, approximately five percent near the top of the drilled shafts. Both items represent an increased risk of requiring changes to shaft diameter as design progresses.

Design for 12-foot diameter drilled shafts was developed for comparison. A maximum demand/capacity ratio equal to 0.85 was targeted and the design resulted in reinforcement densities of approximately 2% near the top of the drilled shafts and 1% (held as a minimum) for the remainder of the drilled shafts. Note that this design was developed using existing loads from the analysis for 10-foot diameter drilled shafts. New analysis was not performed to account for difference in shaft stiffness and soil group effects.

Solutions for the 10-foot diameter drilled shaft and 12-foot diameter drilled shaft are shown in Figure 11. Note that 10-foot and 12-foot diameter are nominal sizes. Actual sizes used for this study are consistent with metric oscillator sizing, as this is the anticipated method of construction.

The change in material quantity (including an allowance for changes to the shaft cap) is provided in Section 5.

Figure 11: Bent 8 Drilled Shaft Comparison

4.6 Miscellaneous Items

Expansion joints, bearings, and tie-down elements at the ends of the cable-stayed bridge will all need to accommodate ten inches of increased movement associated with lateral spreading. This additional movement can be accommodated in the modular joints and bearings at the ends of the cable-stayed bridge with readily available larger movement joints and bearings. The tie-down elements will need a minor increase in material quantity to carry full HL93 live load in the Strength I Limit State. The change in quantity is associated with adding a few strands to some of the tie-down elements. The estimated additional cost of these items is provided in Section 5.

4.7 Summary of Findings

The results of this study show that, if ground improvement is not utilized, the effects of lateral spreading on the performance of the cable-stayed approach spans following the LODE are not significantly detrimental to the structure.

Relatively minor increases in material quantity are required in the edge girders, stay cables, tie-down elements, and drilled shafts to carry full HL93 live load without post-EQ corrective cable adjustments.

Expansion joints, bearings, and tie-down elements will all need to accommodate ten inches of increased movement associated with lateral spreading.

Vertical deflections of the superstructure and the resulting change in the roadway vertical profile are minor. This magnitude of displacement does not present structural problems, is not anticipated to result in unacceptable profile or drainage issues and does not warrant post-EQ cable adjustments. While not a direct focus of this study, it is also worth noting that the time required to adjust cables in a post-EQ scenario is anticipated to be longer than the two-week allowance for repairs prior to opening the bridge to all traffic, as described in the performance requirements for the LODE in Section 3.2.2 of the SDC, further supporting the elimination of post-EQ cable adjustments.

5 Quantity / Cost Impacts

Based on the previously presented findings, elimination of ground improvement will require some increases in material quantities and cost to the structure to achieve acceptable performance criteria. Those quantities and cost impacts are presented in Figure 12 and Figure 13.

The costs presented in Figure 12 and Figure 13 are based on unit costs and cost factors established for the EQRB project during the NEPA phase, except for Bent 8 drilled shaft and Bent 8 ground improvement costs. Those costs were updated for this study and provided by independent estimators, as directed by the County.

Figure 12 shows the total programmatic costs with ground improvement:

• Project cost with ground improvement = \$905.6 million

Figure 13 shows the total programmatic costs without ground improvement:

• Project cost without ground improvement = \$877.3 million

The difference between Figure 12 and Figure 13 shows a project cost savings by eliminating ground improvement = \$28.3 million.

Figure 12: Quantities and Estimate with Ground Improvement

	EARTHQUAKE READY BURNSI Alt1: Girder - Bascule -					SHEET				н	SC
	NUMBER(S): 00511A, 00511B	-					COUNTY Multhomah			-	
		STATE HIGHWAY NUM	MBER				ROUTE NUMBER				
		N/A					N/A				
e Po	ost SCOPE I	REFERENCE NAME/P	HONE							SMD	
	Alt1: Girder - Bascule - Cable Stayed Bridge Type Configuration						Date Entered:	-		Date Ch	ecked
_		Ste	ve Draho	ota / (503) 423-3	3712		8/3/2021				10/2/2022
Т					1						Section
o.	ITEM		UNIT	QUANTITY		UNIT COST	SUB TOTAL				Totals
1	Preparation						Contingency =	-	15%	\$	53,546,000
	Mobilization Temp Erosion & Sediment Control	8.0% 1.0%	LS	1	ŝ	19,207,000 2,401,000	\$ 19,207,000 \$ 2,401,000				
	Temp. Protection and Direction of Traffic	2.0%	LS	1	ŝ	4,802,000	\$ 4,802,000				
	Removal of Existing Structure and Obstruction		LS	1	\$	16,500,000					
	Removal of Existing Buildings Site Preparation	1.0%	LS LS	1	\$ \$	1,250,000 2,401,000	\$ 1,250,000 \$ 2,401,000				
	Site Preparation	1.076	La	'	1	2,401,000	3 2,401,000	1			
1	Civil/Roadwork						Contingency =		20%	\$	16,233,000
	Roadway Surface Traffic Signals		LS	1	\$ \$	1,154,000 1,200,000	\$ 1,154,000 \$ 1,200,000				
	Illumination		LS		ŝ	926,000	\$ 1,200,000				
	Earthwork		LS	1	š	1,195,000	\$ 1,195,000				
	Storm Water & Drainage		LS	1	\$	2,572,000					
	Erosion Control & Planting Pedestrian Connections (East-West Elev Basis)	1.00%	LS LS	0	\$ \$	2,580,000	\$ 2,580,000 \$	'			
	LRT Impacts		LS	1	ŝ	2.320,000	\$ 2.320,000				
	Utilities		LS	1	\$	1,580,000	\$ 1,580,000				
- k	Bridge Structure				-		Contingency =	_	25%		248,596,000
- ľ	West Approach Conventional		LS	1	\$	13,933,163	\$ 13,933,163		2076	3	240,590,000
	West Approach Long		LS	1	ŝ	7,831,088	\$ 7,831,088				
	Main River Movable Span		LS	1	\$	117,459,658	\$ 117,459,658				
	East Approach Long		LS LS	1	\$	52,271,629 3,198,774	\$ 52,271,629 \$ 3,198,774				
	East Approach Conventional Pier Protection		LS	1	ŝ	2,000,000	\$ 2,000,000				
	Harbor Wall Reconstruction		LS	0	\$	1,500,000	\$	- I			
- k	Existing Pier Rip-Rap Removal		LS	1	\$	2,182,000	\$ 2,182,000		15%		31.830.000
- 1	Temporary Construction		LS	0	5		Contingency =		10%	\$	31,830,000
	Staged Construction Premium		LS	ŏ	ŝ	-	s .				
	Temporary Marine Works (work bridges, cofferdams, et	ic.)	LS	1	\$	27,678,000	\$ 27,678,000				
- k	Geotechnical Hazard Mitigation		-		-		Contingency =	-	15%	4	27.458.000
ľ	East Approach Ground Improvement		LS	1	\$	23,875,704	\$ 23,875,704		1010	*	21,400,000
	West Approach Ground Improvement		LS	0	\$		s	- I			
ŀ	Other Related Items		<u> </u>		-		Contingency	_	30%	\$	153.508.000
ľ	Aesthetics Premium	2%	LS	1	5	5.000,000	S 5.000,000		3078	1.0	103,000,000
	Willamette River Mitigation (floodway, habitat)		LS	1	ŝ	412,500	\$ 412,500				
	Contractor Access Premium (barges, RR, parks, off-site		LS	1	\$	15,000,000					
	Facility Impacts (classroom, Esplanade, Sat. Mkt, skate Sewer pipe relocation (west bank)	park)	LS	1	\$	1,500,000	\$ 1,500,000 \$	1			
	TriMet (temporary catenary, bus bridge)		LS	ŏ	ŝ	800,000	ŝ				
	UPRR Protection and Flagging		LS	1	\$	3,000,000	\$ 3,000,000				
	Gross Receipts Tax (3%)		LS LS	1	s	11,329,890 3,000,000	\$ 11,329,890 \$ 3,000,000				
	Contractor Work Zone Security Tug Assists		LS	1	ŝ	3,000,000	\$ 3,000,000				
	River Patrol		LS	1	ŝ	600,000					
	General Conditions (from Owner's Rep Ind Cost Estima	ite)	LS	1	\$	77,440,000					
1.	Construction Total with Contingency					Weighted	Direct Contingency =		23.9%	s	531,171,000
- ľ	Subtotal (wo Other Related Items)						\$ 310,518,016	s	377,663,000	\$	531,171,000
	Other Related Items						\$ 118,082,390		153,508,000		
1											
- 19	Cost Risk Analysis - Additional Contingency Market Conditions, Material Fluctuations, Risks, and Ur	containties					\$ 22,400,000			\$	22,400,000
	Market Conditions, Material Floordations, Risks, and or	icertainties			W	eighted Total	Project Contingency =		29.2%		
- 14	Right of Way					-				\$	27,781,000
1	Engineering & Broject Delivery										171 740 909
	Engineering & Project Delivery NEPA Phase						s .			*	171,748,393
	PE (Incl. Design, PI, ROW Acquisition, OR, CMGC) +	(PE)					\$ 90,000,000				
	County Admin. (Oversight, Permits, etc) Construction Engineering	(CEI)	15%				\$. \$ 81,748,393				
ŀ	Construction Engineering	(CEI)	13%				a 01,740,393	,			
	Total Project Cost before Inflation (2022 \$)									\$	753,100,393
	Const Cumulative Inflation (annual rate) ROW Cumulative Inflation (annual rate)	3.5% 5.0%	years years	6.2 4.5		23.8% 24.6%	\$ 145,717,000 \$ 6,821,000				
	Total Project Programmatic Cost (2028 \$)									5	905,638,393
	. orgen i relace i refligerererere ense (zozo s)									4	-anai0201232

This is the non-escalated subtotal of all Program costs (in 2022 dollars)
 Equivalent time to mid-point of construction for various work packages (weighted)
 Assumes ROW is acquired before construction phase of Main Construction Package

11/2/2023 12:54 PM LS-VL-NTB-M2

Figure 13: Quantities and Estimate Without Ground Improvement

		EARTHQUAKE READY BURNS Alt1: Girder - Bascule					UTILLT				ソく
		ER(\$): 1A, 00511B						COUNTY			
GE N/			STATE HIGHWAY NUM	MBER				Multhomah ROUTE NUMBER			
nside	Brid	fge and Approaches	N/A					N/A			
Pos	•	SCOPE	REFERENCE NAME/P	HONE				Date Entered:		SMD Date Ch	
	ľ	Alt1: Girder - Bascule - Cable Stayed Bridge Type Configuration	Stor.		ota / (503) 423-3	740		8/3/2021		Date Cr	10/2/2022
-	_		508	ve Drand	na / (503) 423-3	1		0/3/2021		-	Section
		ITEM		UNIT	QUANTITY	L,	UNIT COST	SUB TOTAL			Totals
Pre		ration	0.001					Contingency =	15%	\$	54,083,000
		Mobilization Temp Erosion & Sediment Control	8.0% 1.0%	LS LS	1	\$	19,518,000 2,440,000	\$ 19,518,000 \$ 2,440,000			
	ŀ	Temp. Protection and Direction of Traffic	2.0%	LS	1	\$	4,880,000	\$ 4,880,000			
		Removal of Existing Structure and Obstruction Removal of Existing Buildings		LS	1	s	16,500,000 1,250,000	\$ 16,500,000 \$ 1,250,000			
		Site Preparation	1.0%	LS	1	ŝ	2,440,000	\$ 2,440,000			
Civ	/il/R	Roadwork				+		Contingency =	20%	5	16,290,000
		Roadway Surface		LS	1	\$	1,154,000	\$ 1,154,000			
		Traffic Signals Illumination		LS	1	s	1,200,000 926,000	\$ 1,200,000 \$ 926,000			
		Earthwork		LS	1	\$	1,195,000	\$ 1,195,000			
		Storm Water & Drainage Erosion Control & Planting	1.00%	LS	1	\$	2,572,000 2,628,000	\$ 2,572,000 \$ 2,628,000			
	-	Pedestrian Connections (East-West Elev Basis)		LS	0	\$		s -			
		LRT Impacts Utilities		LS	1	\$	2,320,000 1,580,000	\$ 2,320,000 \$ 1,580,000			
						Ľ	.,			_	
Bu		e Structure West Approach Conventional		LS	1	\$	13,933,163	Contingency = \$ 13,933,163	25%	\$	253,396,000
	1	West Approach Long		LS	1	\$	7,831,088	\$ 7,831,088			
		Main River Movable Span East Approach Long		LS	1	\$	117,459,658 56,111,477	\$ 117,459,658 \$ 56,111,477			
		East Approach Conventional		LS	1	ŝ	3,198,774	\$ 3,198,774			
		Pier Protection Harbor Wall Reconstruction		LS	1	\$	2,000,000 1,500,000	\$ 2,000,000 \$.			
	- 1	Existing Pier Rip-Rap Removal		LS	1 1	ŝ	2,182,000	\$ 2,182,000			
Te		orary Construction Temporary Diversion-Bridge		LS	0	\$		Contingency =	15%	\$	31,830,000
	- 1	Staged-Construction Premium		LS	ő	ŝ		s .			
		Temporary Marine Works (work bridges, cofferdams, o	stc.)	LS	1	\$	27,678,000	\$ 27,678,000			
Ge		chnical Hazard Mitigation						Contingency =	15%	\$	
		East Approach Ground Improvement West Approach Ground Improvement		LS	0	s s		w w			
					Ů	l°.					
Ot		Related Items Aesthetics Premium	2%	LS	4	\$	5.000,000	Contingency = \$ 5.000,000	30%	\$	152,647,000
	1	Willamette River Mitigation (floodway, habitat)		LS	1	ŝ	412,500	\$ 412,500			
		Contractor Access Premium (barges, RR, parks, off-si		LS	1	\$	15,000,000	\$ 15,000,000			
		Facility Impacts (classroom, Esplanade, Sat. Mkt, skat Sewer pipe relocation (west bank)	epark)	LS	1	ş	1,500,000 10,000,000	\$ 1,500,000 \$.			
		TriMet (temporary catenary, bus bridge)		LS	0	s	800,000	\$.			
		UPRR Protection and Flagging Gross Receipts Tax (3%)		LS	1	s	3,000,000 10,667,970	\$ 3,000,000 \$ 10,667,970			
	- 1	Contractor Work Zone Security		LS	1	ŝ	3,000,000	\$ 3,000,000			
		Tug Assists River Patrol		LS LS	1	\$	800,000 600,000	\$ 800,000 \$ 600,000			
		General Conditions (from Owner's Rep Ind Cost Estim	ate)	LS	1	ŝ	77,440,000	\$ 77,440,000			
6	nst	ruction Total with Contingency					Weighted	Direct Contingency =	24.4%	\$	508,246,000
1.0		Subtotal (wo Other Related Items)						\$ 290,997,161	\$ 355,599,000	•	
		Other Related Items						\$ 117,420,470	\$ 152,647,000		
Co		Risk Analysis - Additional Contingency								\$	22,400,000
		Market Conditions, Material Fluctuations, Risks, and U	Incertainties			w	eighted Total P	\$ 22,400,000 Project Contingency =	29.9%		
Rig	ght (of Way					ergineed rotain	roject contingency -	20.076	\$	27,781,000
En	aine	eering & Project Delivery								¢	171,748,393
En		NEPA Phase						s -		*	171,740,383
	1	PE (Incl. Design, PI, ROW Acquisition, OR, CMGC) + County Admin. (Oversight, Permits, etc)	(PE)					\$ 90,000,000 \$.			
		Construction Engineering	(CEI)	15%				\$ 81,748,393			
To	tal F	Project Cost before Inflation (2022 \$)								4	730,175,393
								-		4	100,110,000
RC	onst W (Cumulative Inflation (annual rate) Cumulative Inflation (annual rate)	3.5% 5.0%	years years	6.2 4.5		23.8% 24.6%				
	tal F	Project Programmatic Cost (2028 \$)								\$	877,263,393
es: (1)		General Conditions is estimated separately from the D	irect Costs and Co	ntingend	ies included with	hin e	ach item				
(2)		Cost Risk Analysis was performed by an Independent						https://www.fhwa.dot.go	ov/majorprojects/cost	estimati	ng/
(3)		This is the non-escalated subtotal of all Program costs									
(4)		Equivalent time to mid-point of construction for various									
(5)		Assumes ROW is acquired before construction phase	of Main Construction	on Packa	ige						
										11/2/20	23 12:53 PM
										need	A 10 10 10 10 10 10 10 10 10 10 10 10 10

6 Conclusion

This study's findings indicate the following:

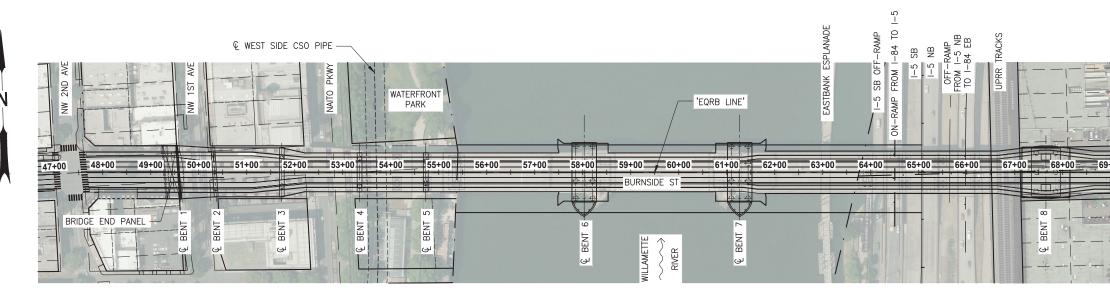
- Material increases are necessary in the edge girders, stay cables, tie-down elements, and drilled shaft foundation to achieve project performance requirements after the LODE.
- Expansion joints, bearings, and tie-down elements will all need to be up-sized to accommodate ten inches of increased movement associated with lateral spreading.
- Vertical deflections of the superstructure, due to lateral spreading, and the resulting change in the roadway vertical profile are minor. This magnitude of displacement likely does not result in an unacceptable roadway profile and drainage and does not warrant post-EQ cable adjustments.
- The permanent deformation in the towers (approximately one inch at the top of the tower) resulting from lateral spreading is not structurally problematic and is aesthetically acceptable.
- The cost of the estimated material increases required if ground improvement is not utilized are less than the estimated cost of ground improvement.

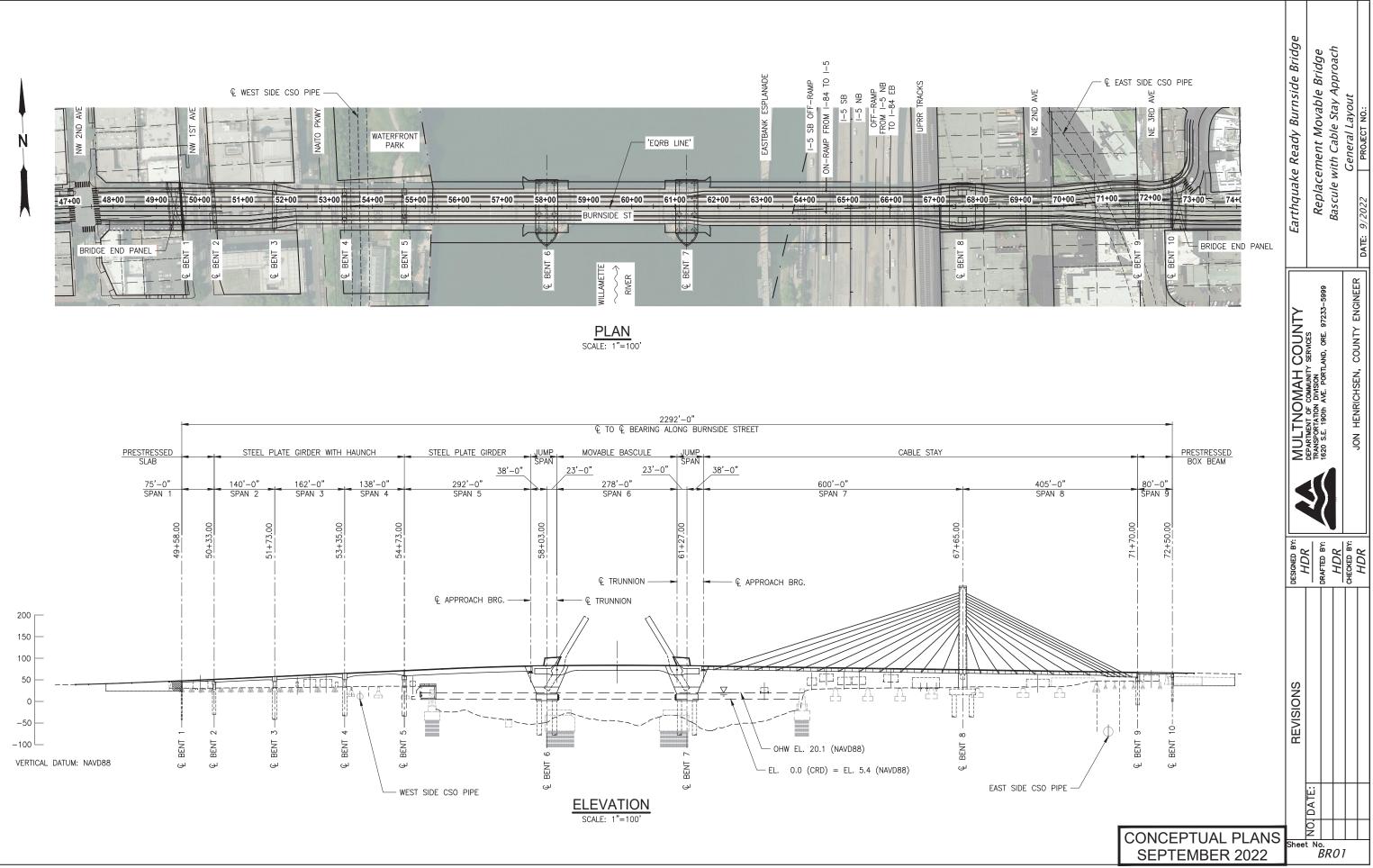
Based on this study's findings, elimination of ground improvement for the cable-stayed tower foundation (Bent 8) is recommended. For the CDD submittal, the recommendation is to eliminate the cost of ground improvement and include the cost of up-front additional materials to account for slightly higher loads due to residual bridge displacements. This results in an estimated net savings of \$28.3 million in programmatic costs.

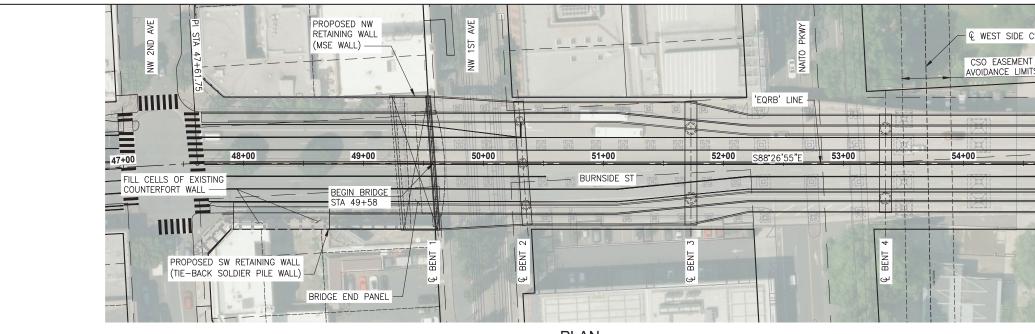
Note that these findings are applicable to tower style/bridge configuration modeled. Other tower styles may not result in similar findings.

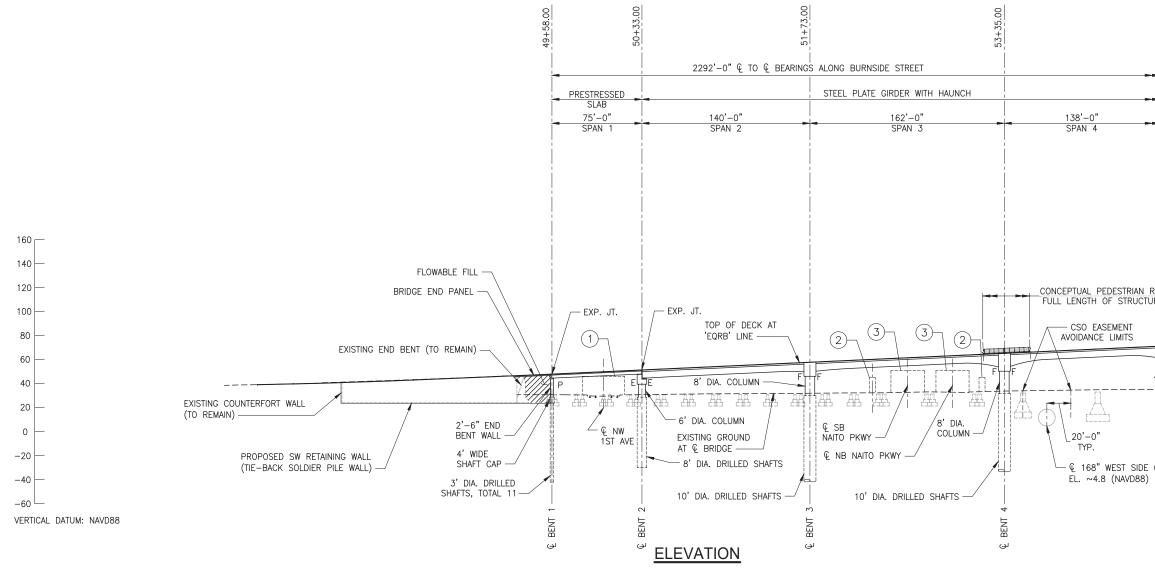
7 References

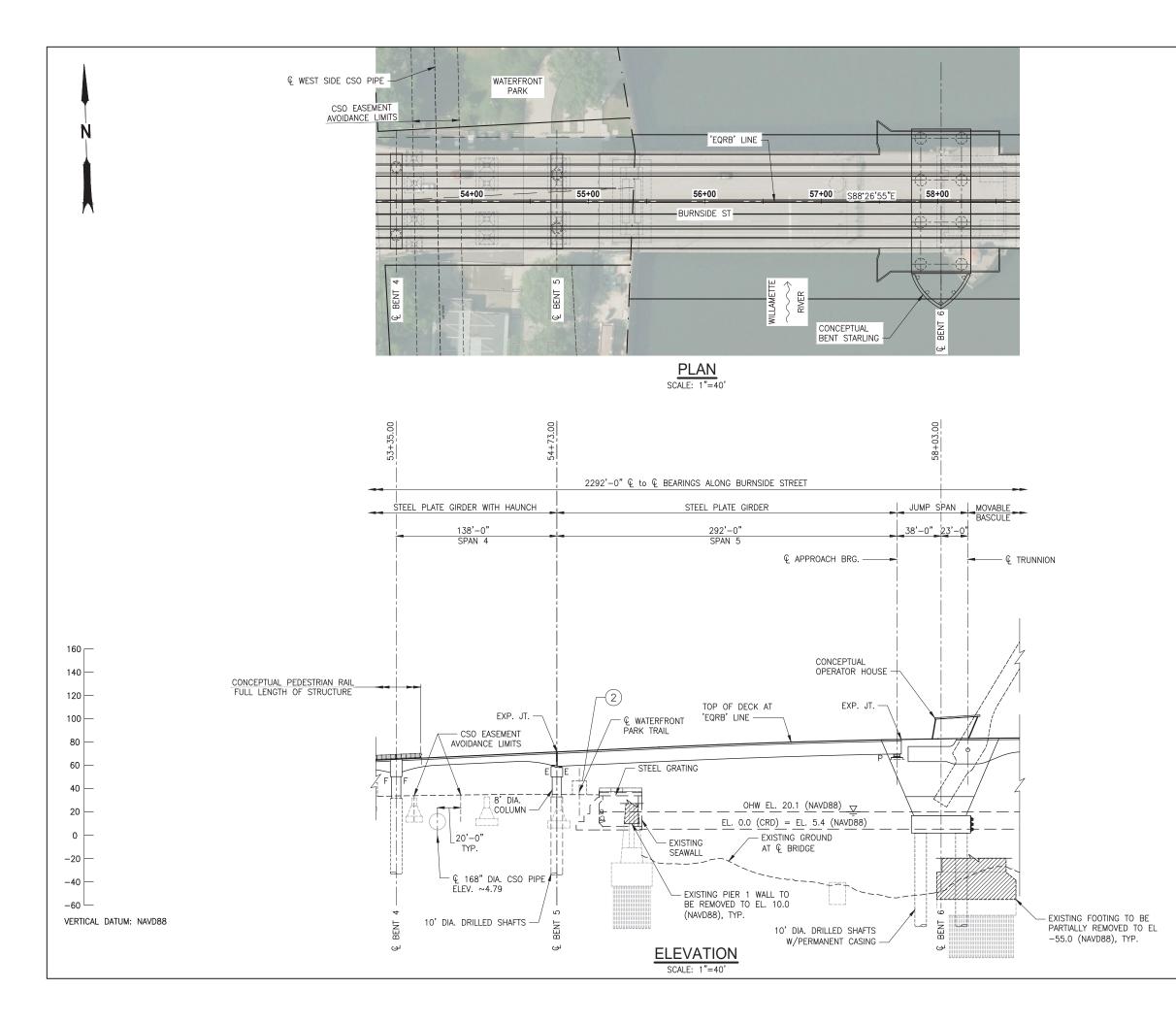
Multnomah County

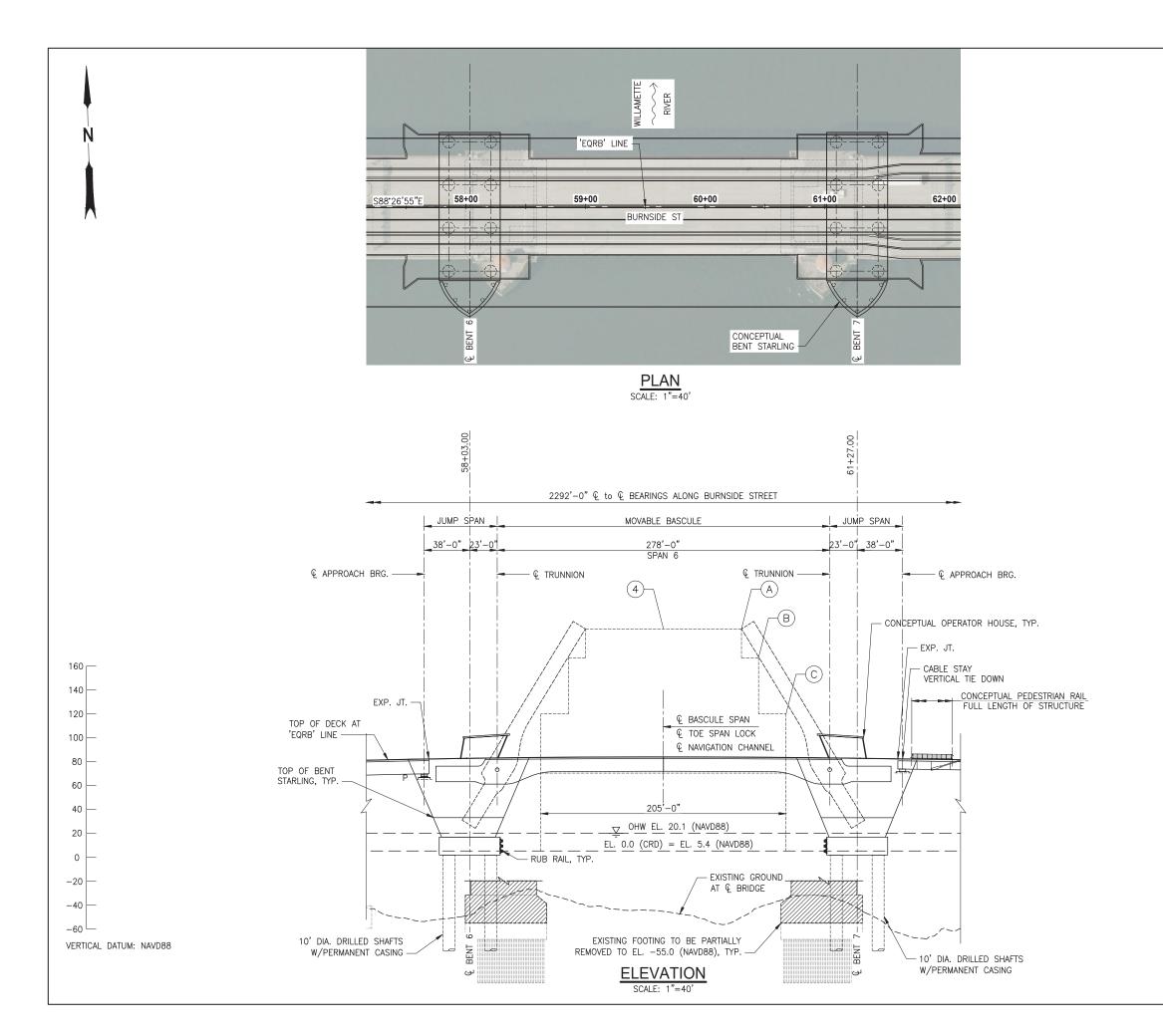

- 2023 EQRB Basic of Design Memorandum: Post-Earthquake Emergency Response and Haul Vehicles Design Assessment (Available Upon Request).
- 2022a EQRB Final Preliminary NLTH Geotechnical Report (Unpublished).
- 2022b Revised Bridge Design Criteria Report. https://www.multco.us/file/121738/download.
- 2022c Revised Seismic Design Criteria Report. https://www.multco.us/file/121739/download.

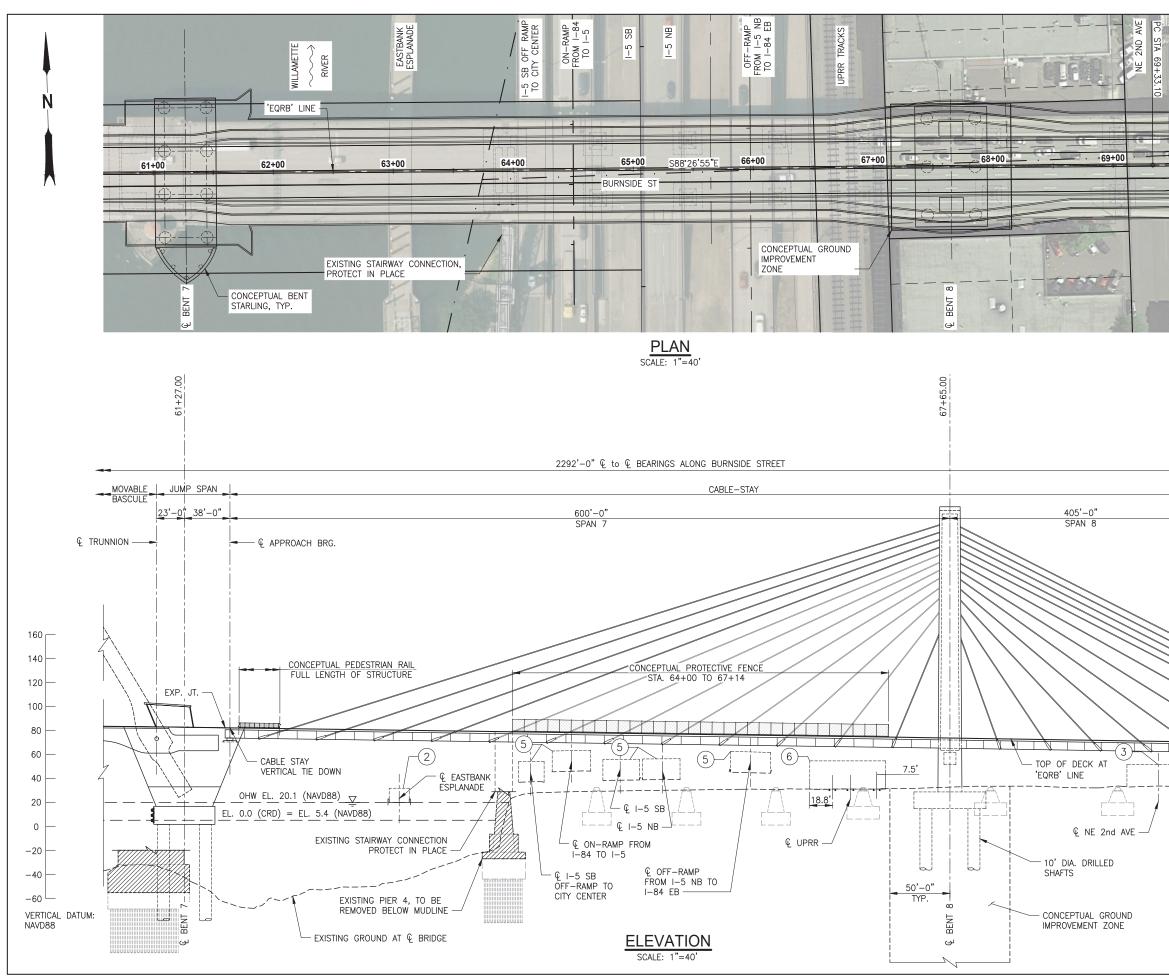

PTI (Post-Tensioning Institute)

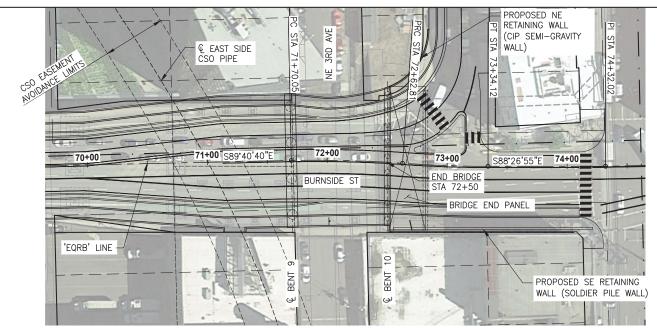

2018 DC45.1-18: Recommendations for Stay Cable Design, Testing, and Installation. <u>https://www.post-</u> <u>tensioning.org/publications/store/productdetail.aspx?ItemID=DC451&Language=English</u> <u>&Units=Metric</u>

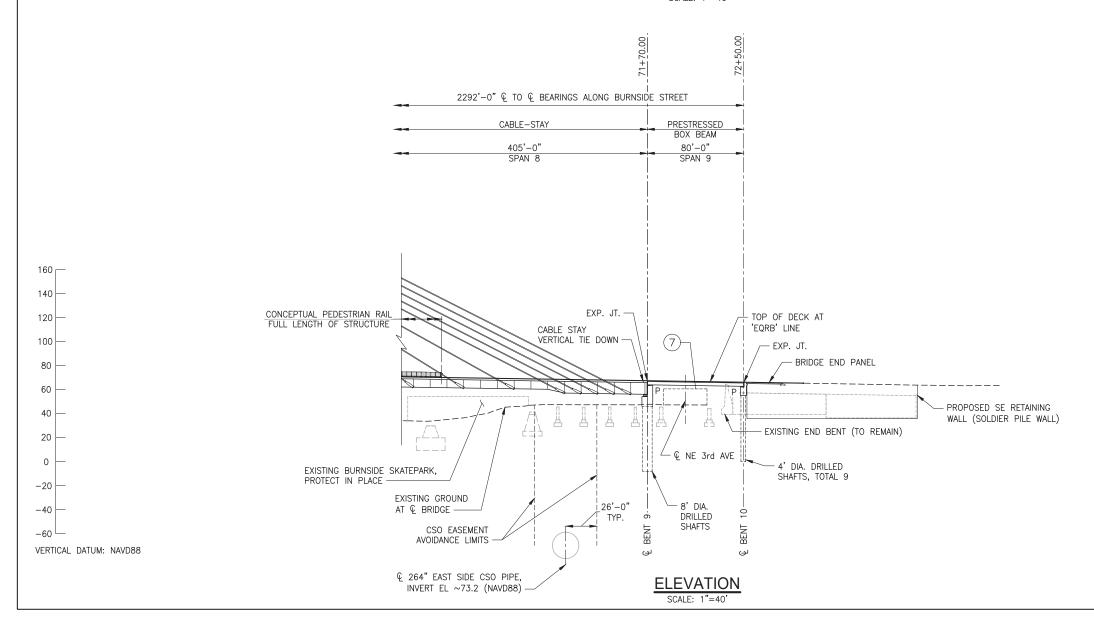

Appendix A. Cable-Stayed Bridge Plans

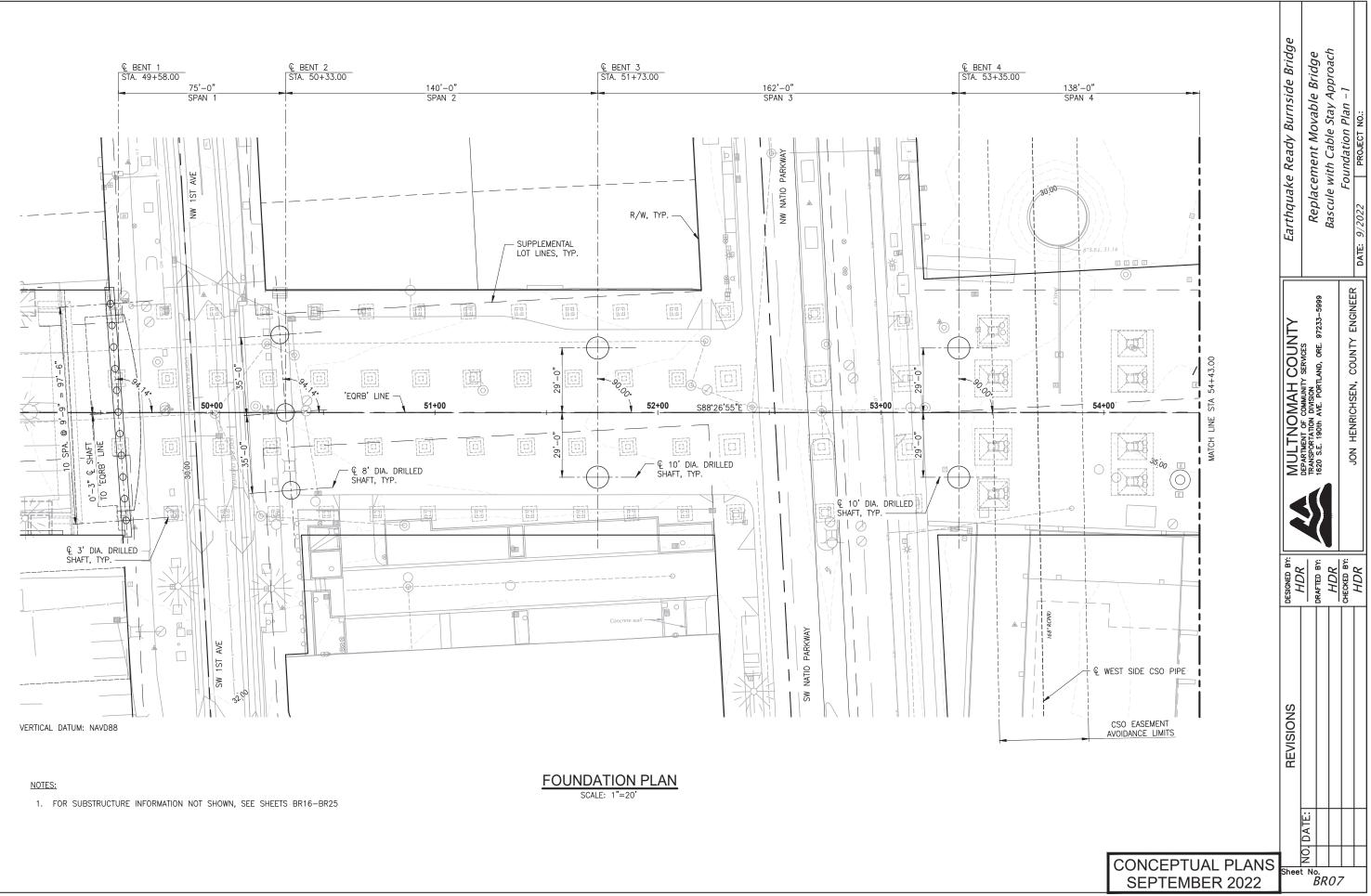


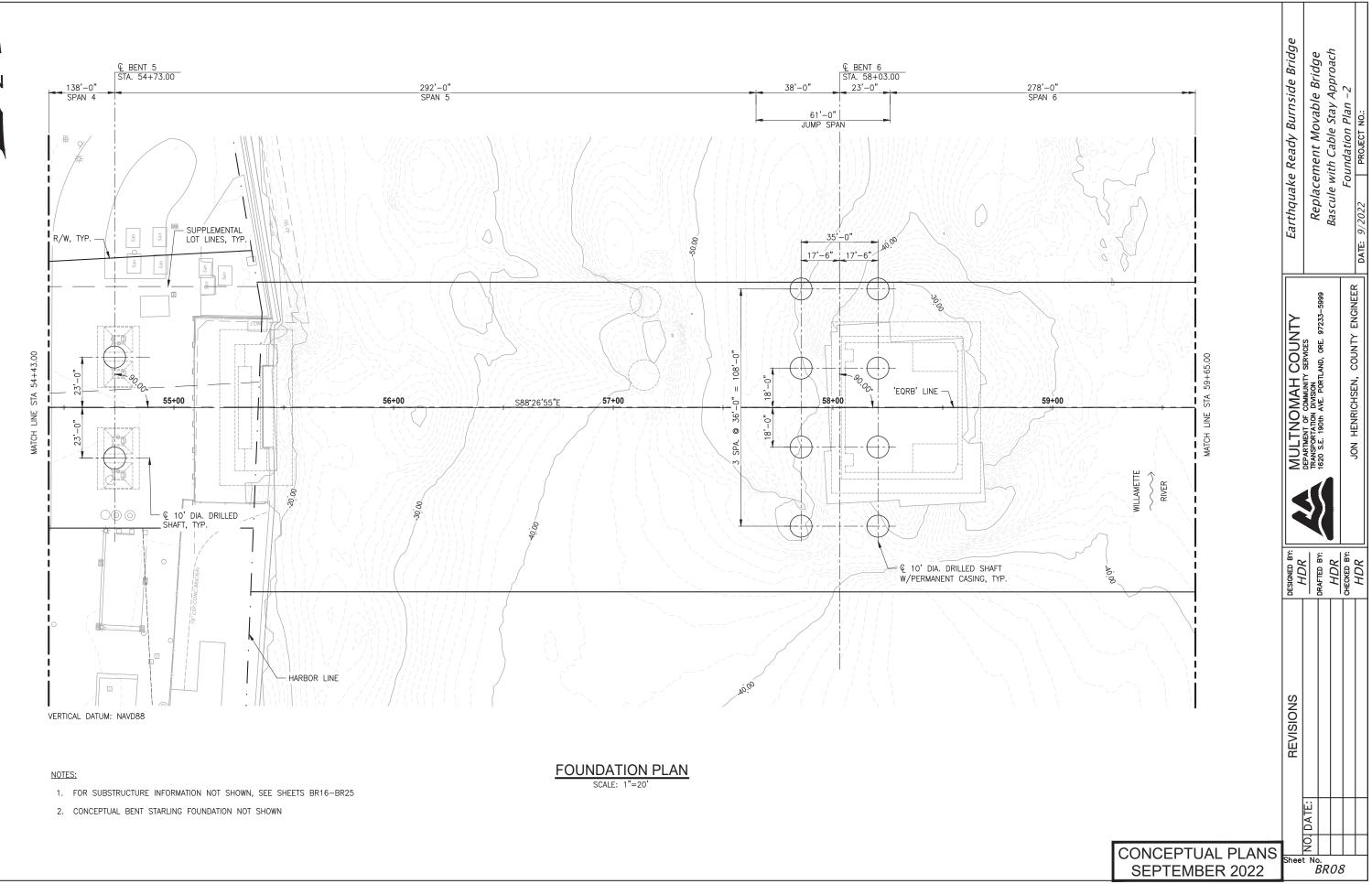

PLAN SCALE: 1"=40'

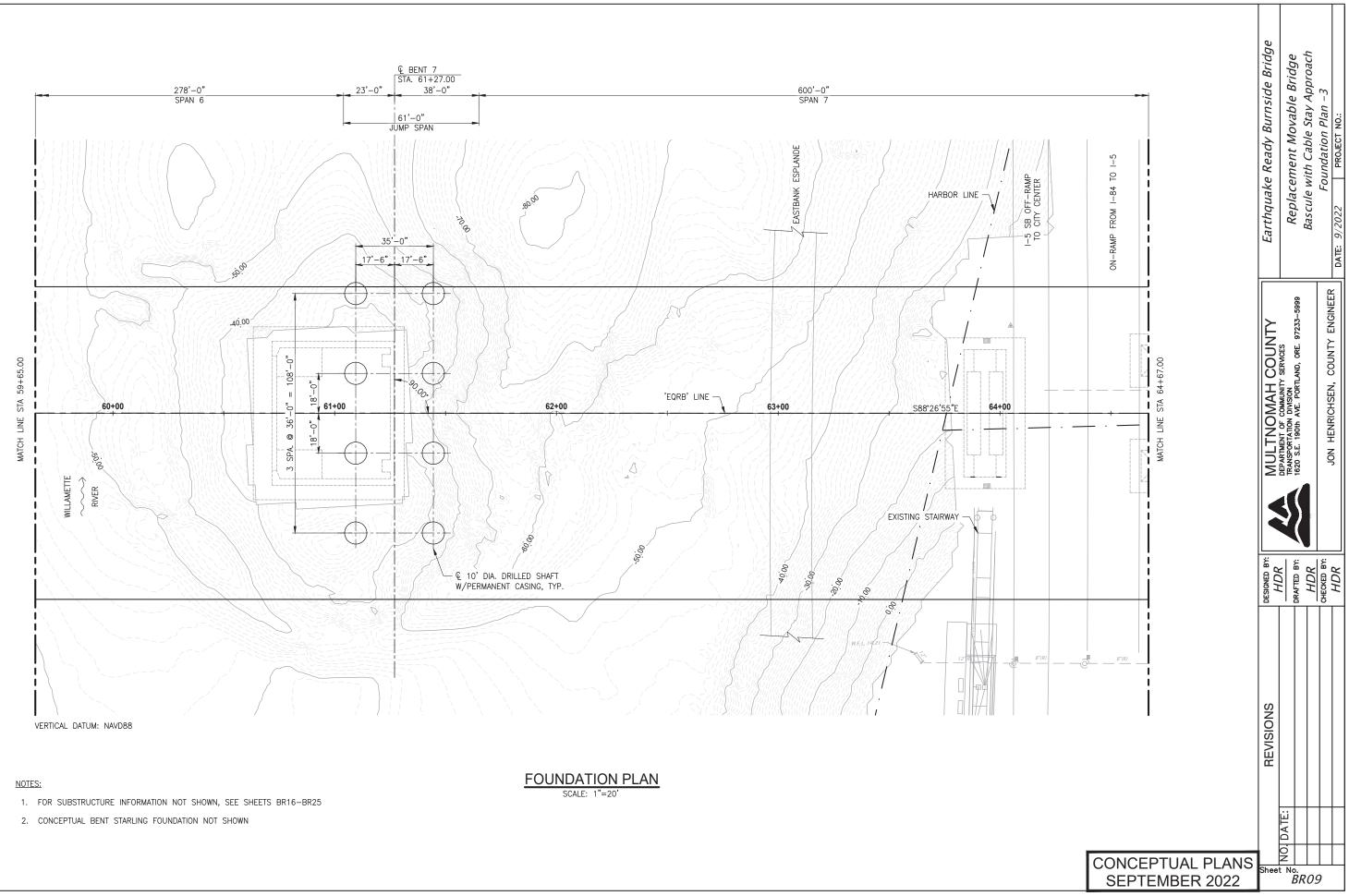

								_
CSO PIPE				Earthquake Ready Burnside Bridge	Replacement Movable Bridge	Bascule with Cable Stay Approach	Plan	DATE: 9/2022 PROJECT NO.:
				MULTNOMAH COUNTY	TEAPRIMENT OF COMMUNITY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233–5999		JON HENRICHSEN. COUNTY ENGINEER	
				DESIGNED BY:	DRAFTED BY:	HDR	CHECKED BY:	
RAIL URE	MIN. VERTICAL CLEAR 1 TRIMET LRT 2 PEDESTRIAN 3 CITY STREET	RANCE ENVELOF 15'-6" 12'-0" 18'-0"	P <u>e Legend</u>	REVISIONS	. DATE:			
	CONCEP SEPTE	TUAL P MBER 2		Shee	OZ t No. BI	R02	2	

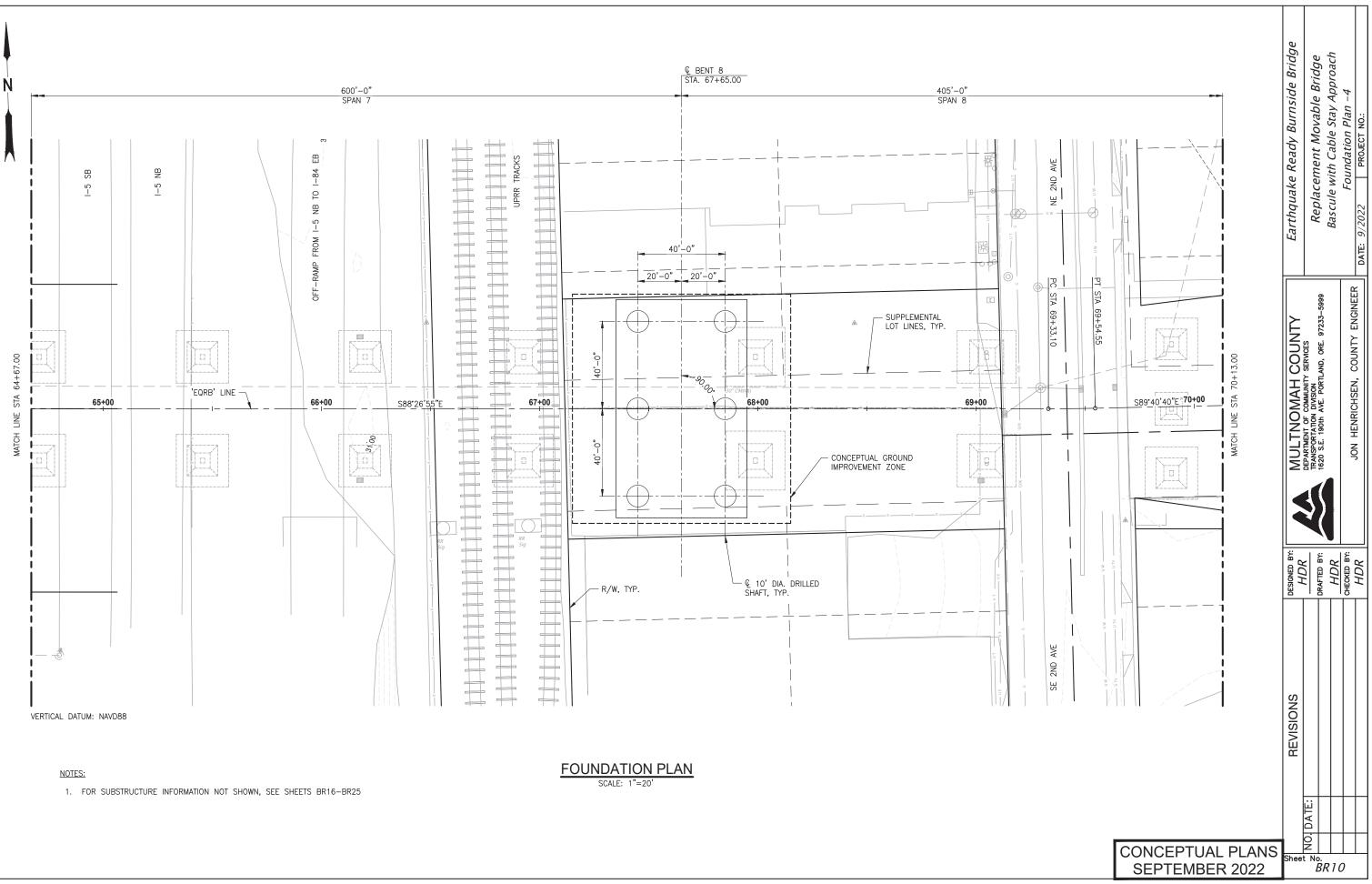

	Earthquake Ready Burnside Bridge	Replacement Movable Bridge Bascule with Cable Stay Approach	Plan and Elevation –2 DATE: 9/2022 PROJECT NO.:
	MULTNOMAH COUNTY	DEPARTATION OF COMUNITY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233–5999	JON HENRICHSEN, COUNTY ENGINEER
IFCEND	DESIGNED BY:	DRAFTED BY:	онескер ву: НDR
LEGEND BRIDGE REMOVAL MIN. VERTICAL CLEARANCE ENVELOPE LEGEND (2) PEDESTRIAN 12'-0"	REVISIONS	D. DATE:	
CONCEPTUAL PLANS SEPTEMBER 2022	Shee	2 t No. <i>BRO</i> .	3

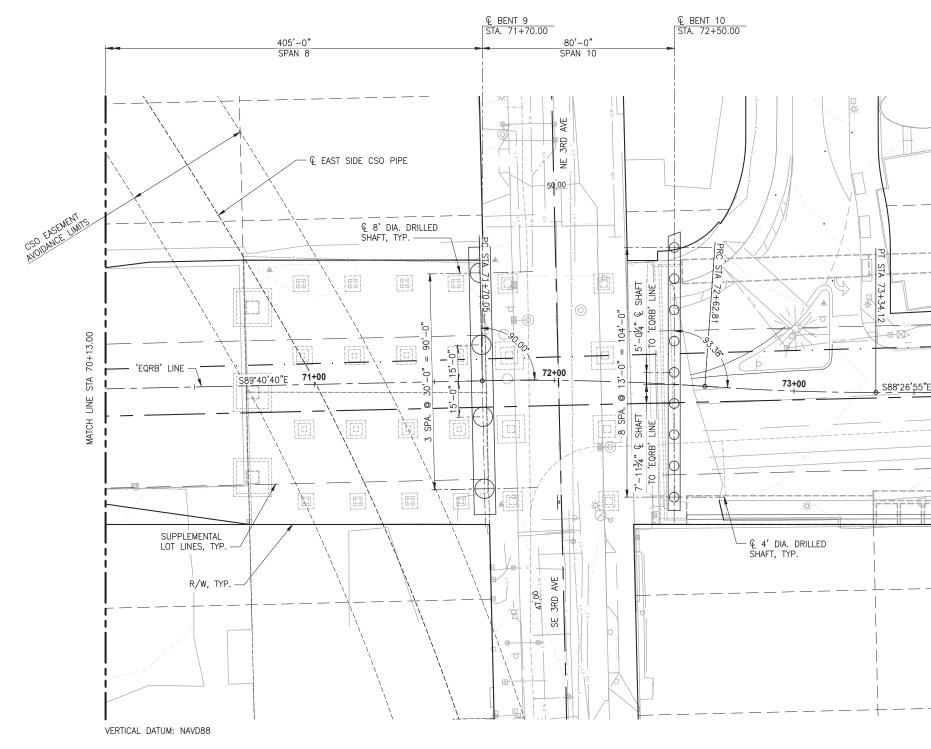

	Earthquake Ready Burnside Bridge	Replacement Movable Bridge Bascule with Cable Stay Approach	Plan and Elevation -3 DATE: 9/2022 PROJECT NO.:
	MULTNOMAH COUNTY	DEPARTMENT OF COMMUNITY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233-5999	JON HENRICHSEN, COUNTY ENGINEER
	DESIGNED BY: H.D.P.	DRAFTED BY: HDR	CHECKED BY: HDR
LEGEND BRIDGE REMOVAL NAVIGATION CLEARANCE ENVELOPE LEGEND (4) NAVIGATION ENVELOPES ENVELOPE VERTICAL CLEARANCE TO CRD OPEN A INFINITE 130'-6" OPEN A INFINITE OPEN C 114'-7" CLOSED 65'-2" CRD: COLUMBIA RIVER DATUM	REVISIONS	NO. DATE:	
CONCEPTUAL PLANS SEPTEMBER 2022	Shee		4

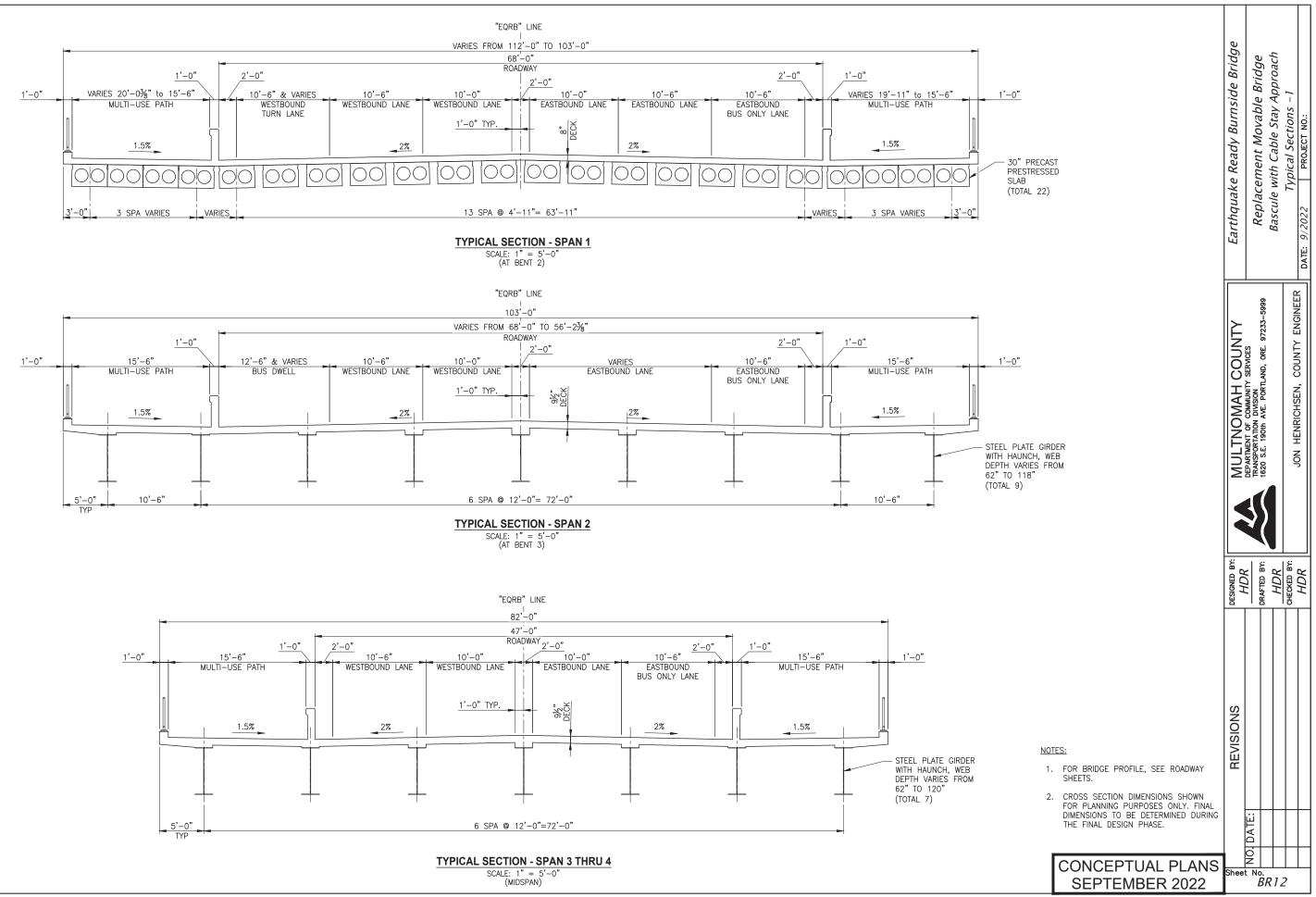

CONCEPTUAL PEDESTRIAN RAIL FULL LENGTH OF STRUCTURE	Earthquake Ready Burnside Bridge	Replacement Movable Bridge	Rascula with Cable Stav Annroach	Dian and Flavation -A		DATE: 9/2022 PROJECT NO.:
CONCEPTUAL PEDESTRIAN RAIL FULL LENGTH OF STRUCTURE MIN. VERTICAL CLEARANCE ENVELOPE LEGEND 2 PEDESTRIAN 12'-0" 3 CITY STREET 18'-0" 5 I-5 17'-4" 6 UPRR 23'-6" LEGEND	MULTNOMAH COUNTY	DEPARTMENT OF COMMUNITY SERVICES TRANSPORTATION DIVISION	1620 S.E. 190th AVE. PORTLAND, ORE. 97233-5999		JON HENRICHSEN, COUNTY ENGINEER	
CONCEPTUAL PEDESTRIAN RAIL FULL LENGTH OF STRUCTURE MIN. VERTICAL CLEARANCE ENVELOPE LEGEND 2 PEDESTRIAN 12'-0" 3 CITY STREET 18'-0" 5 I-5 17'-4" 6 UPRR 23'-6" LEGEND	DESIGNED BY:					
CONCEPTUAL PLANS	REVISIONS	NO, DATE:				

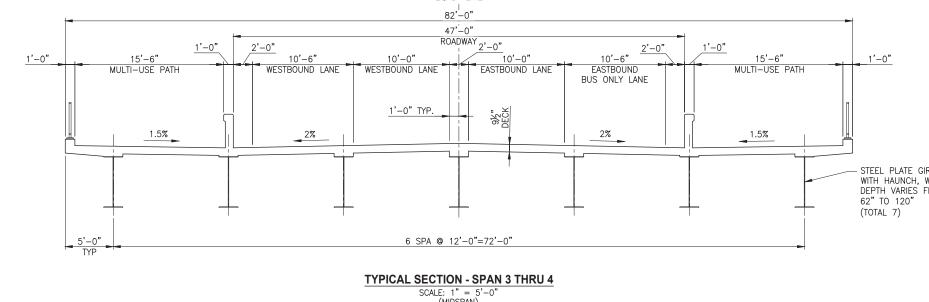


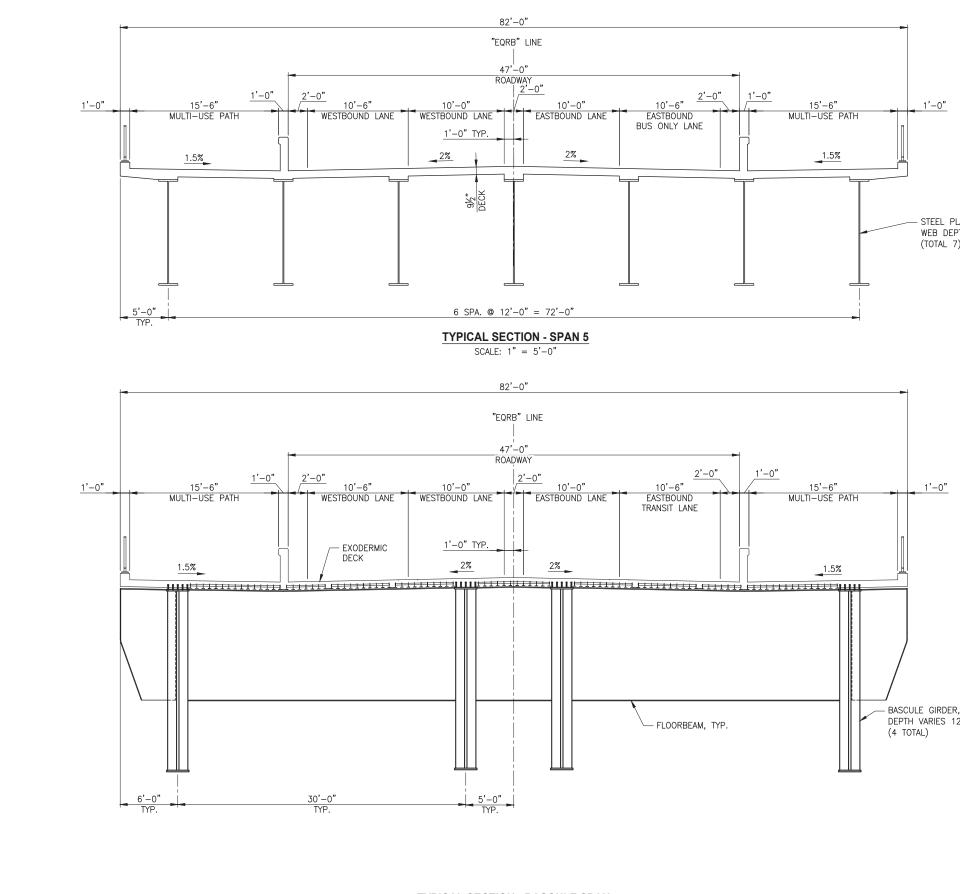





	Earthquake Ready Burnside Bridge	Replacement Movable Bridge Bascule with Cable Stav Approach	Plan and Elevation -5 DATE: 9/2022 PROJECT NO.:
	MULTNOMAH COUNTY	DEPARTMENT OF CAMMUNITY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233-5999	JON HENRICHSEN, COUNTY ENGINEER
	DESIGNED BY:		CHECKED BY: HDR
MIN. VERTICAL CLEARANCE ENVELOPE LEGEND 7 CITY STREET 13'-8" @ NE 3rd AVE	REVISIONS	DATE:	
CONCEPTUAL PLANS SEPTEMBER 2022	Shee	on a la constante de la consta	16 16

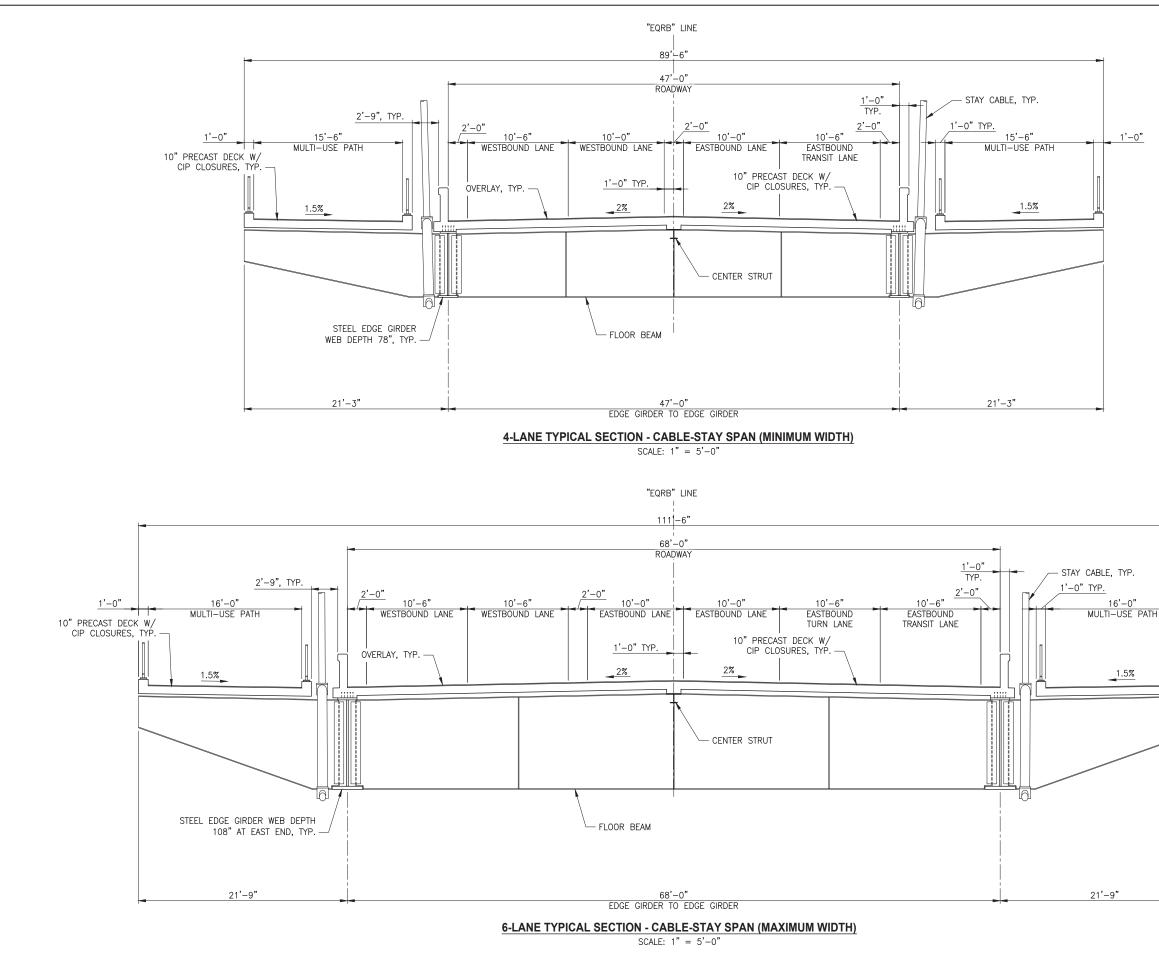


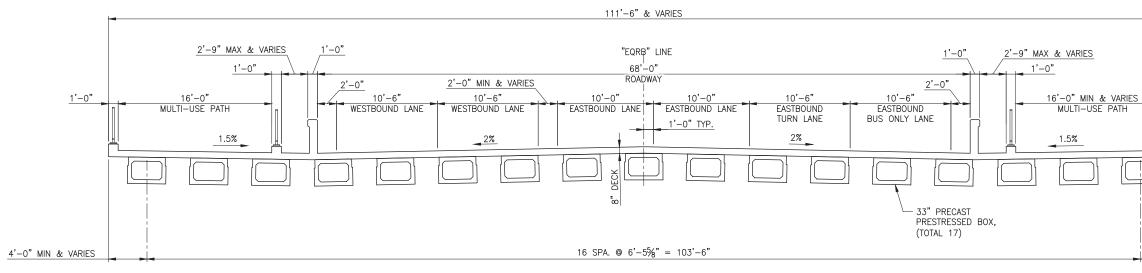

NOTES:


1. FOR SUBSTRUCTURE INFORMATION NOT SHOWN, SEE SHEETS BR16-BR25

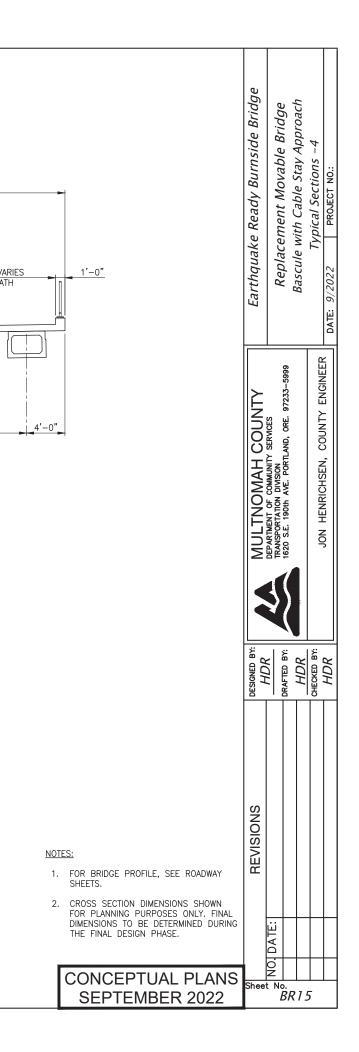
FOUNDATION PLAN SCALE: 1"=20'

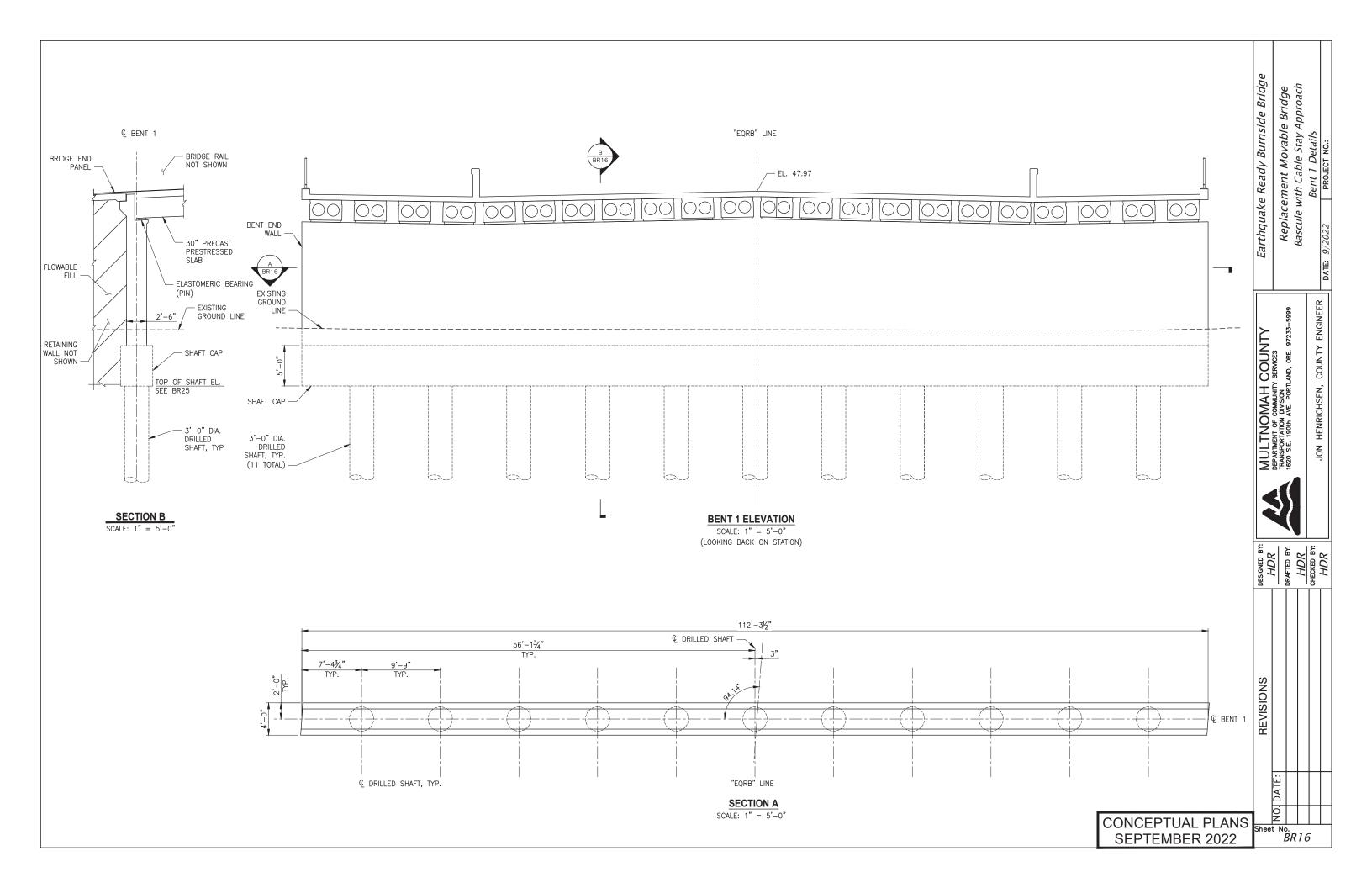
		The section of the se	Replacement Movable Bridge	DATE: 9/2022 PROJECT NO.:
			DEVICET IN OUTATI COUNTY EVANABIATION COMMUNTY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233-5999	JON HENRICHSEN, COUNTY ENGINEER
_		DESIGNED BY:	HDR DRAFTED BY:	CHUK CHECKED BY: HDR
-		REVISIONS		
	CONCEPTUAL PLA SEPTEMBER 202	ANS _{shi} 22	UNO. BR	11

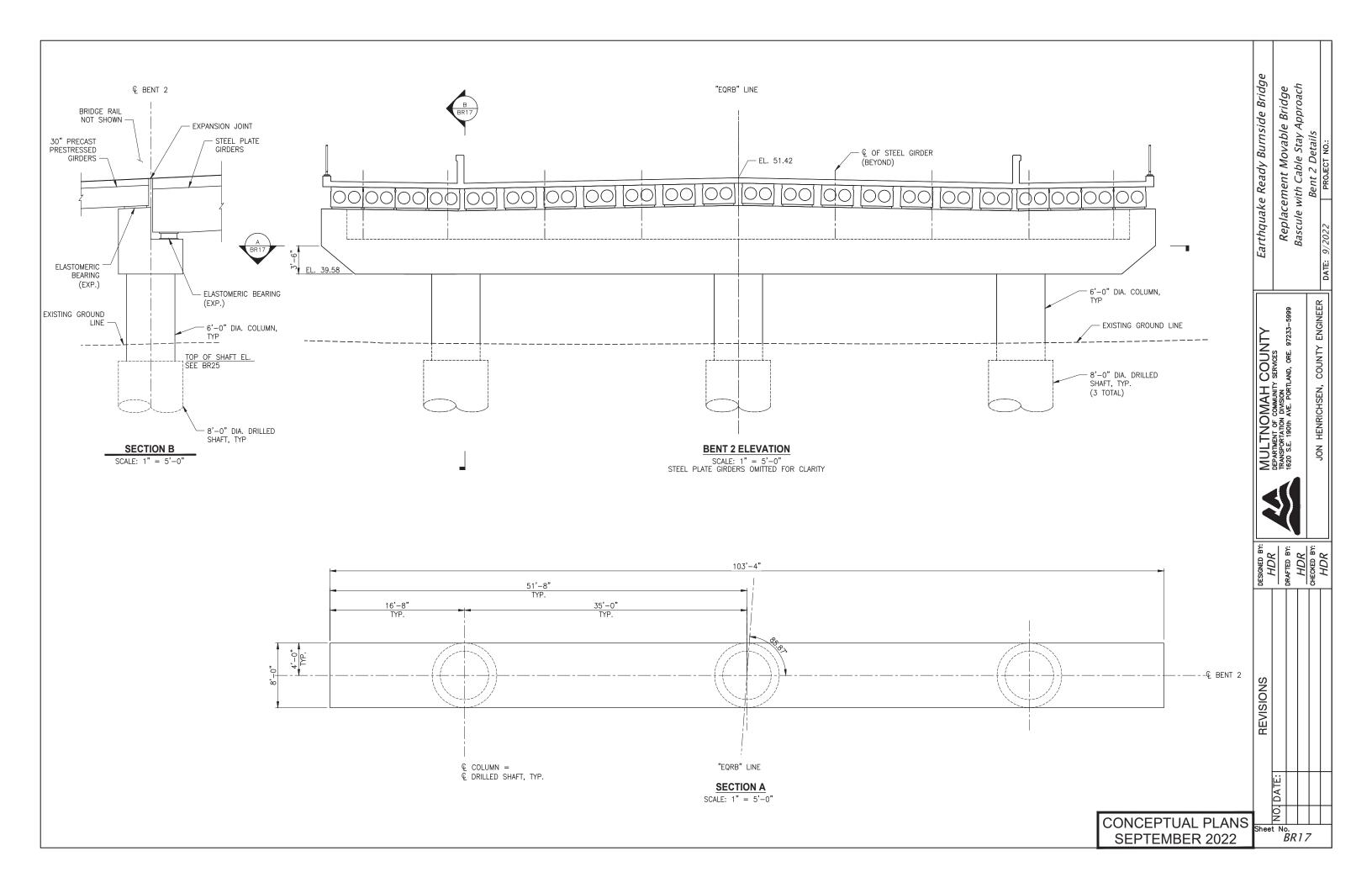


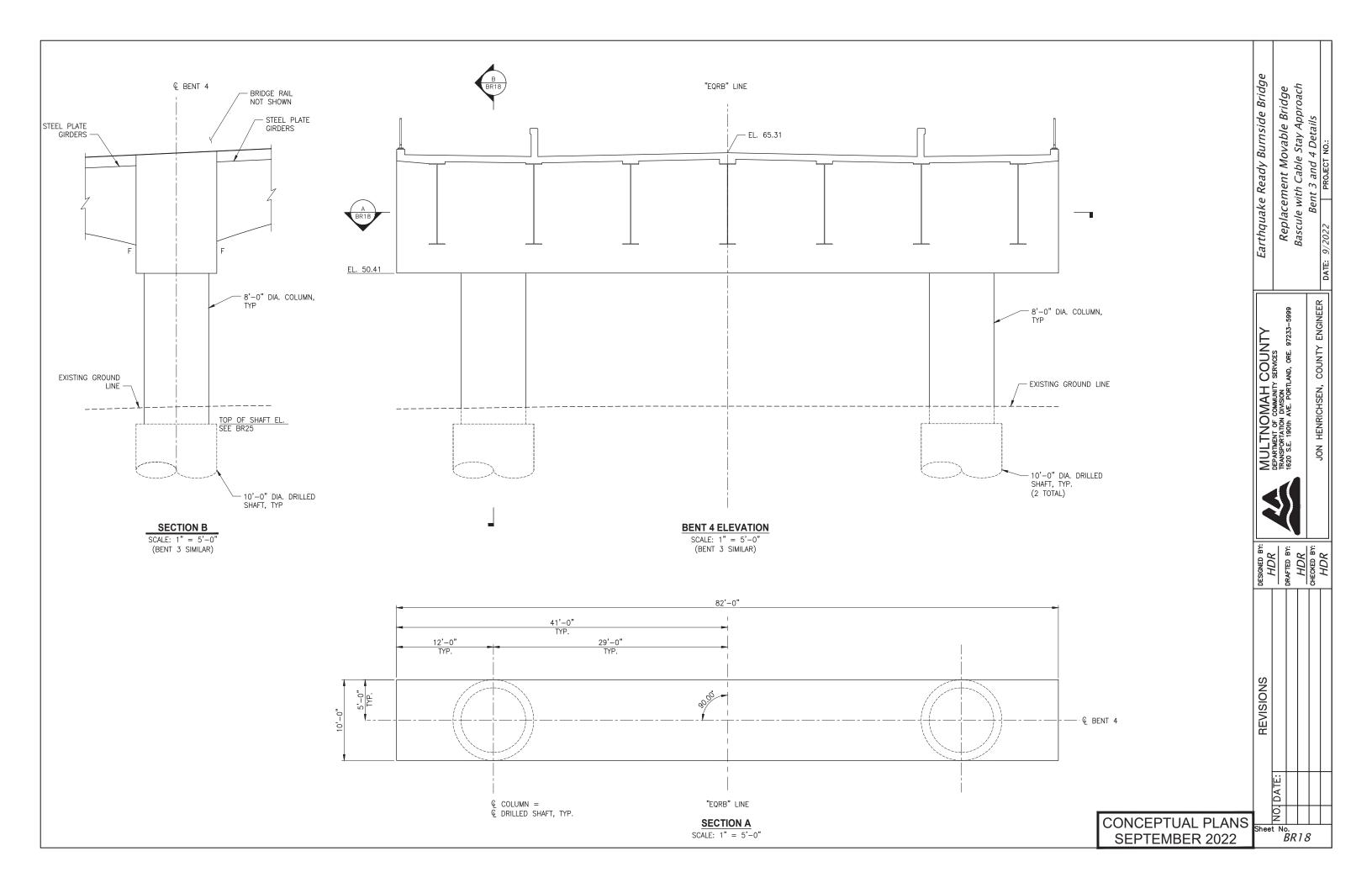


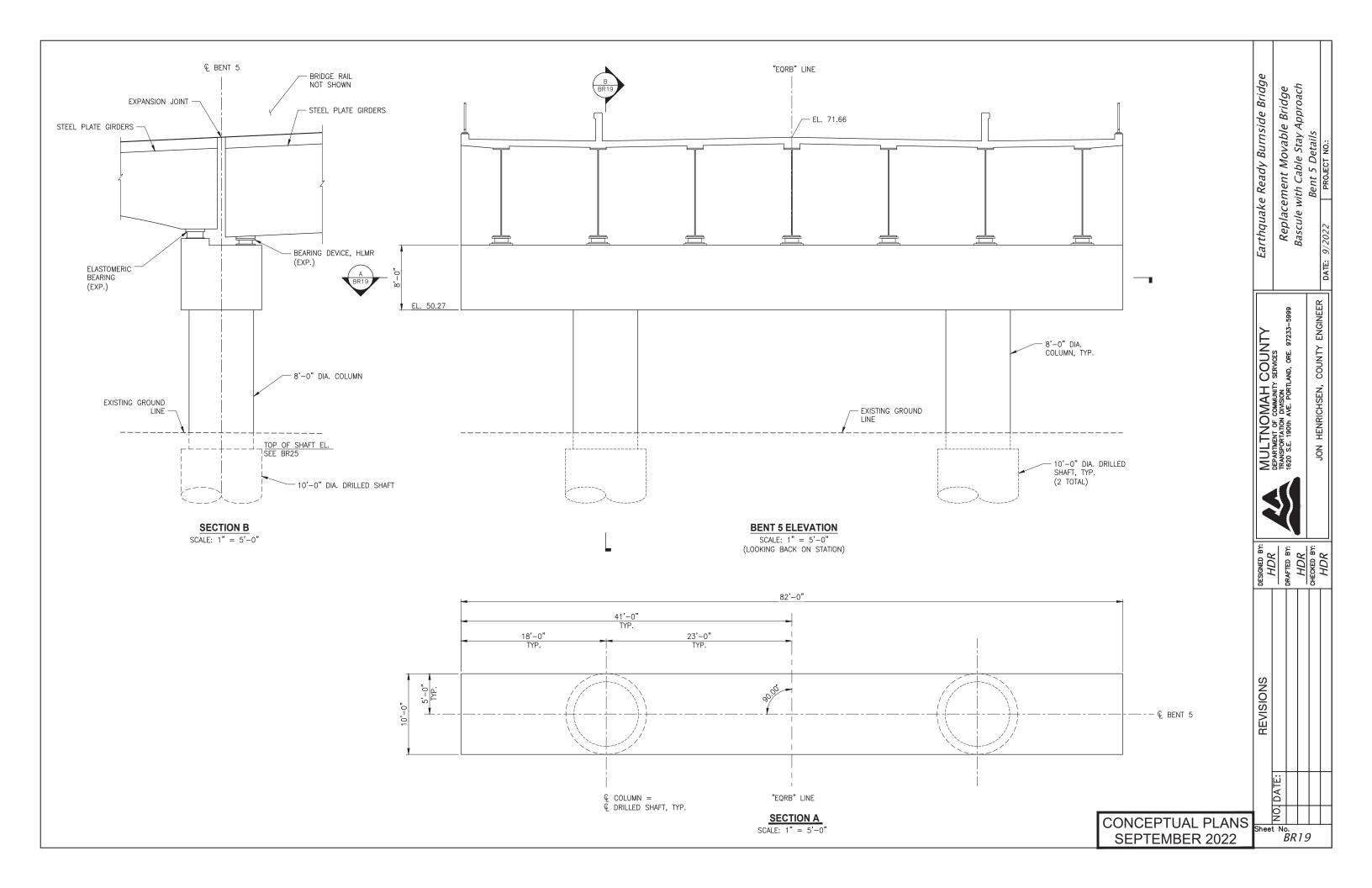
TYPICAL SECTION - BASCULE SPANSCALE: 1" = 5'-0"

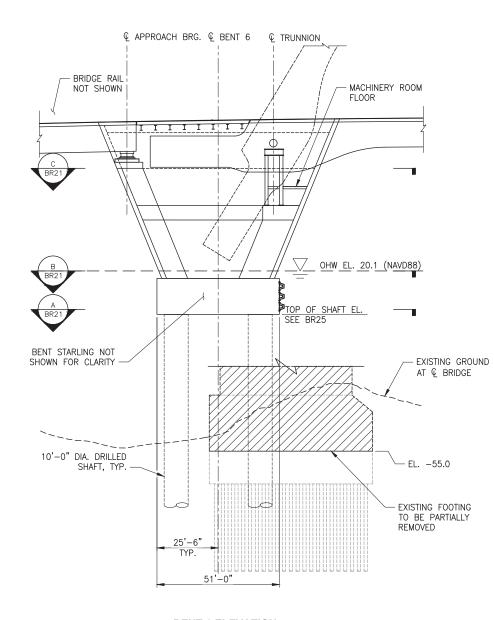

0" EL PLATE GIRDER, DEPTH 132" AL 7)	Earthquake Ready Burnside Bridge	Renlacement Movable Bridge	Rascule with Cable Stav Annroach	Tunical Sections -2	DATE: 9/2022 PROJECT NO.:	
<u>0"</u>	MULTNOMAH COUNTY	MULTNOMAH COUNTY DEPARTMENT OF COMMUNITY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233-5999			JON HENRICHSEN, COUNTY ENGINEER	
	BY					
	DESIGNED BY:				HDR	
RDER, ES 12'-0" TO 21'-0", TYP.						
NOTES: 1. FOR BRIDGE PROFILE, SEE ROADWAY	REVISIONS					
SHEETS. 2. CROSS SECTION DIMENSIONS SHOWN FOR PLANNING PURPOSES ONLY. FINAL	RE					
DIMENSIONS TO BE DETERMINED DURING				+	+	
		DATE				

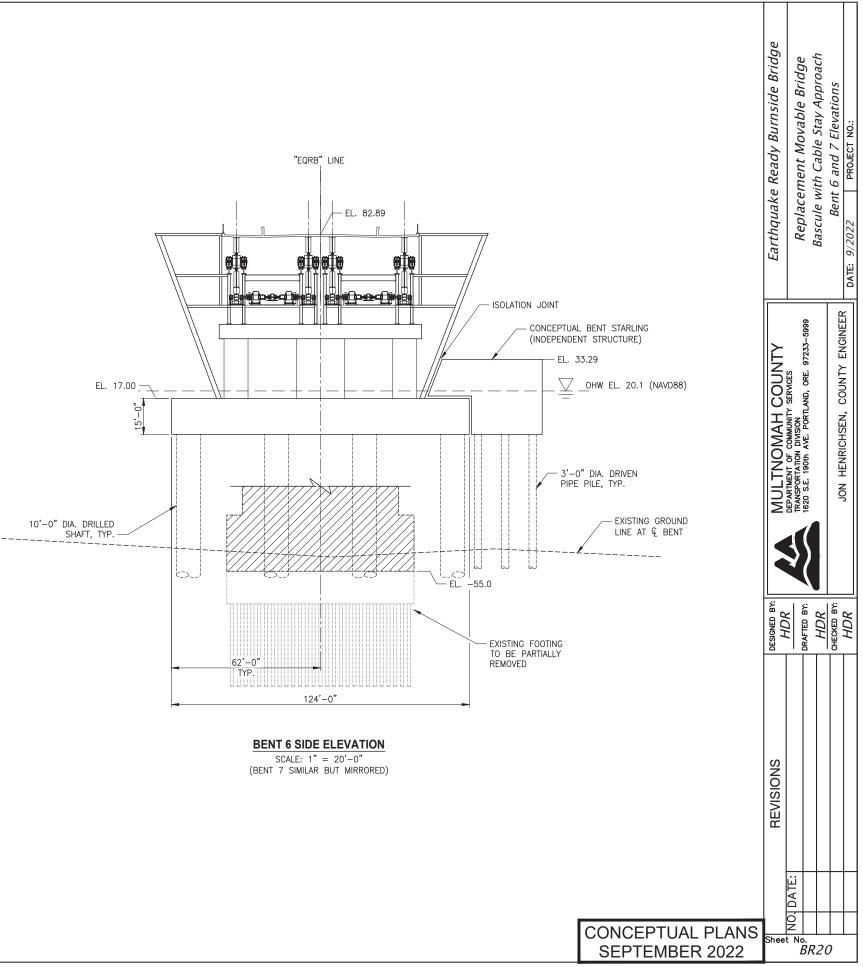


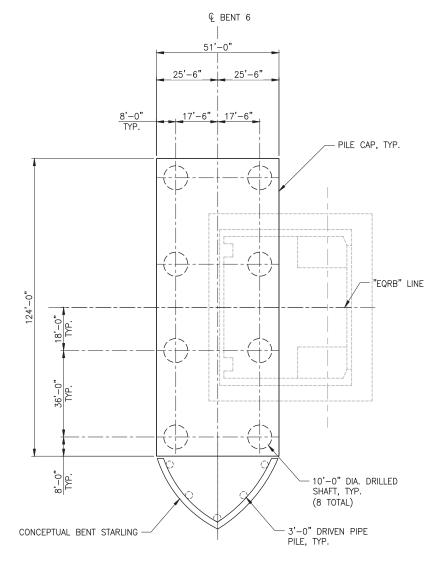

		Earthquake Ready Burnside Bridge	Renlacement Movahle Bridge	Rescula with Cable Stav Annroach	Dascure Will Capic Stay Approach	Typical Sections –3	DATE: 9/2022 PROJECT NO.:
		MULTNOMAH COUNTY DEPARTMENT OF COMMUNITY SERVICES TRANSPORTATION DIVISION 1620 S.E. 190th AVE. PORTLAND, ORE. 97233-5999			10	JON HENRICHSEN, COUNTY ENGINEER	
н 1'-0"		DESIGNED BY:		DRAFTED BY:	HUK	CHECKED BY:	НЛК
NOTE: 1. 2. 3.	5: FOR BRIDGE PROFILE, SEE ROADWAY SHEETS. CROSS SECTION DIMENSIONS SHOWN FOR PLANNING PURPOSES ONLY. FINAL DIMENSIONS TO BE DETERMINED DURING THE FINAL DESIGN PHASE. BRIDGE WIDTH VARIES THROUGHOUT SPANS 7&8 DUE TO ADDITION OF TOWERS, TURN LANES, AND BICYCLE LANE TRANSITIONS.	REVISIONS	DATE:				




 $\frac{\text{TYPICAL SECTION - SPAN 9}}{\text{SCALE: 1"} = 5'-0"}$

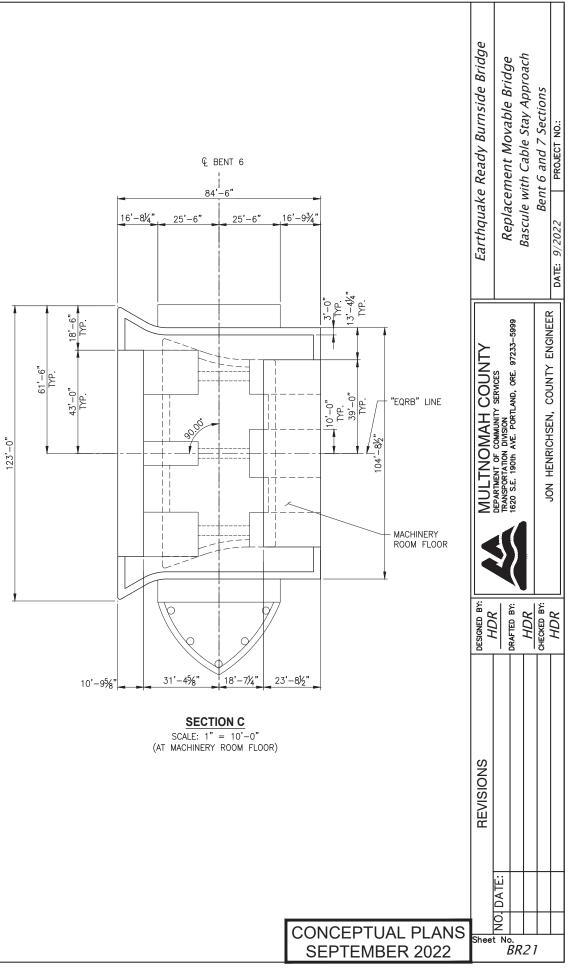


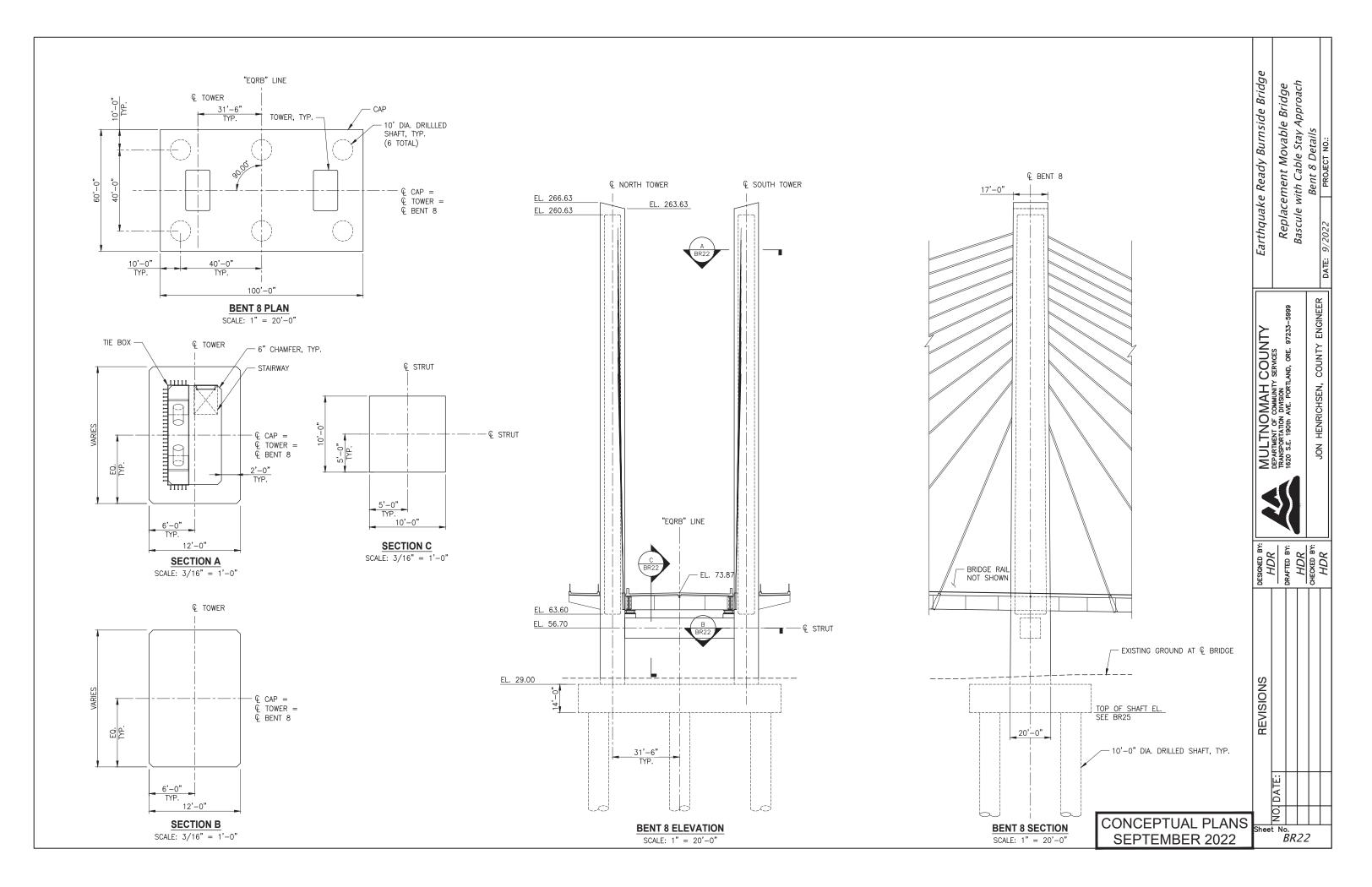


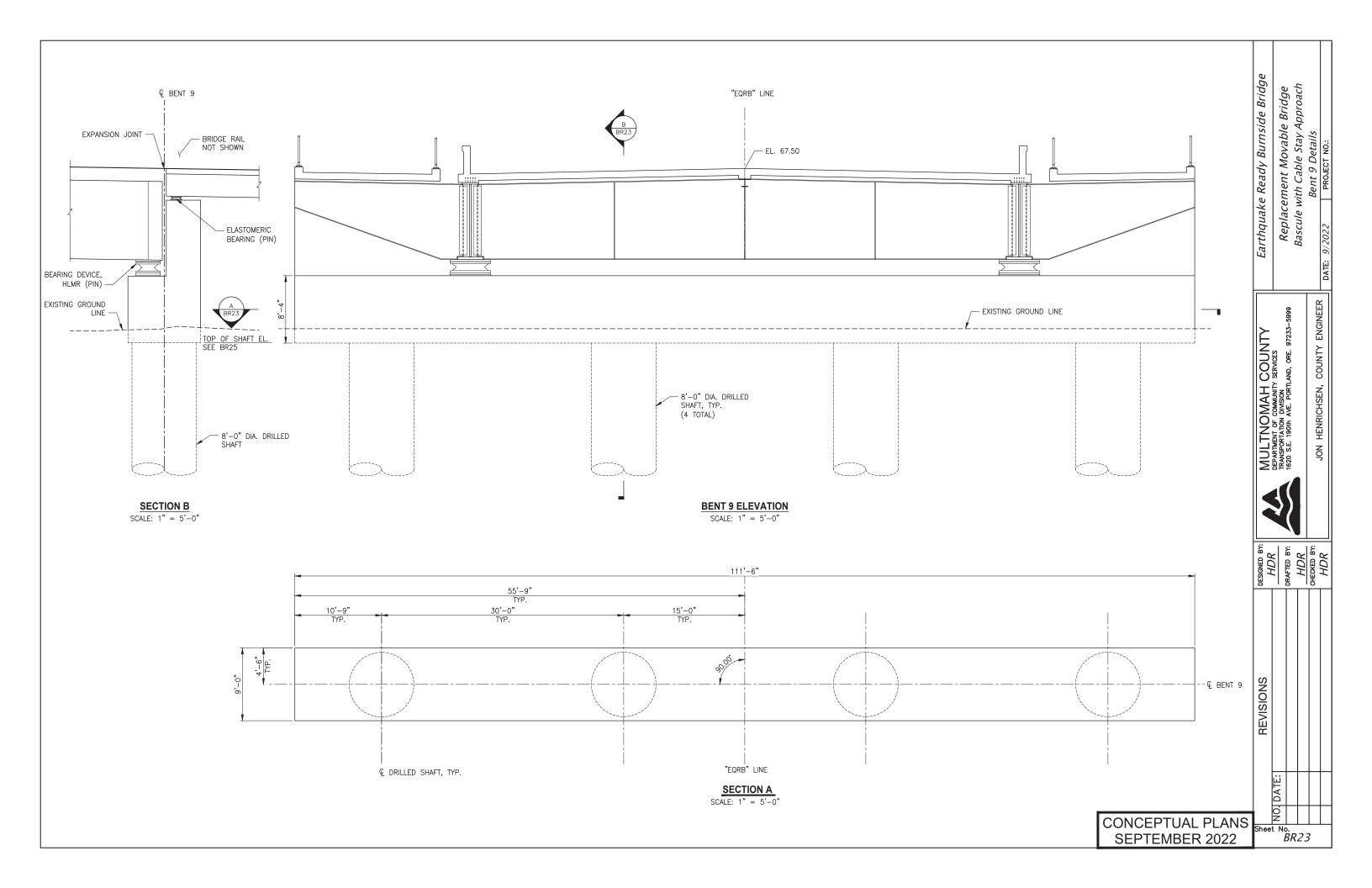

BENT 6 ELEVATION SCALE: 1" = 20'-0" (LOOKING NORTH, BENT 7 SIMILAR BUT MIRRORED)

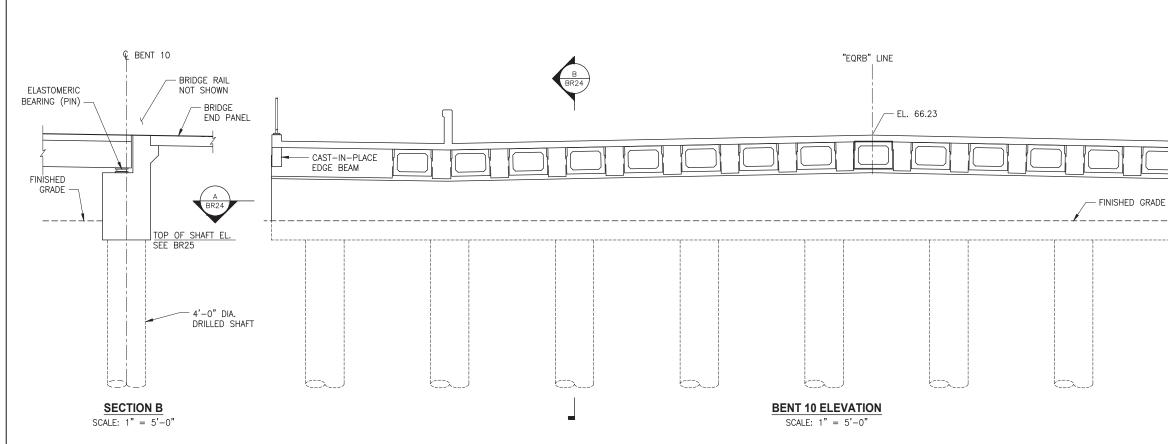
NOTES:

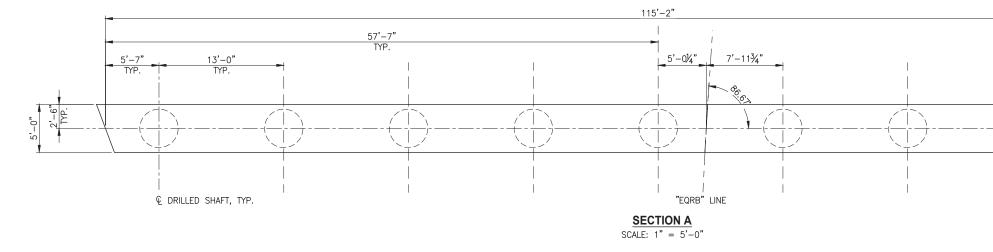
- CONCEPTUAL OPERATOR HOUSE NOT SHOWN.
 FOR ADDITIONAL DETAIL SEE ARCHITECTURAL
- DRAWINGS.

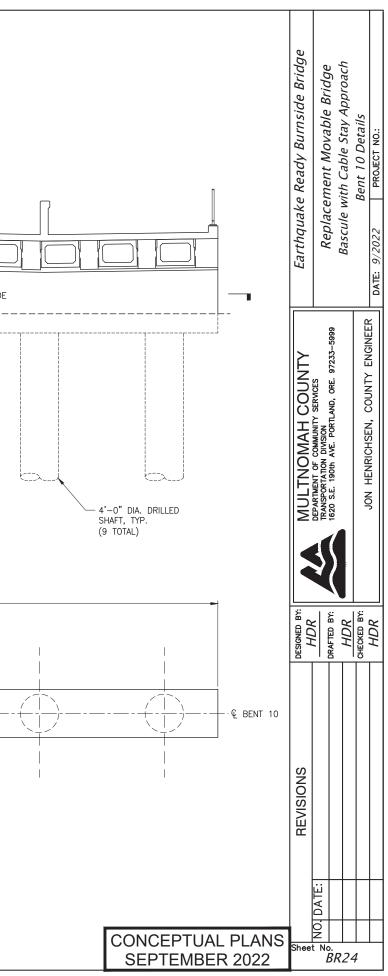

<u>LEGEND</u>

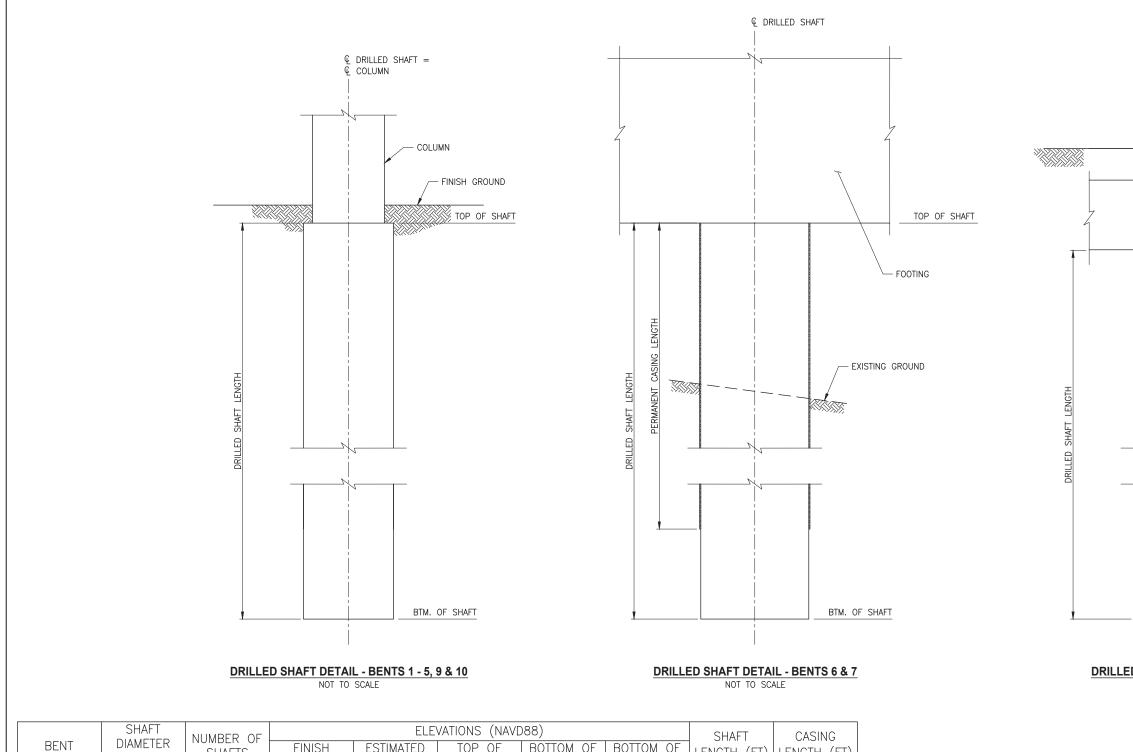


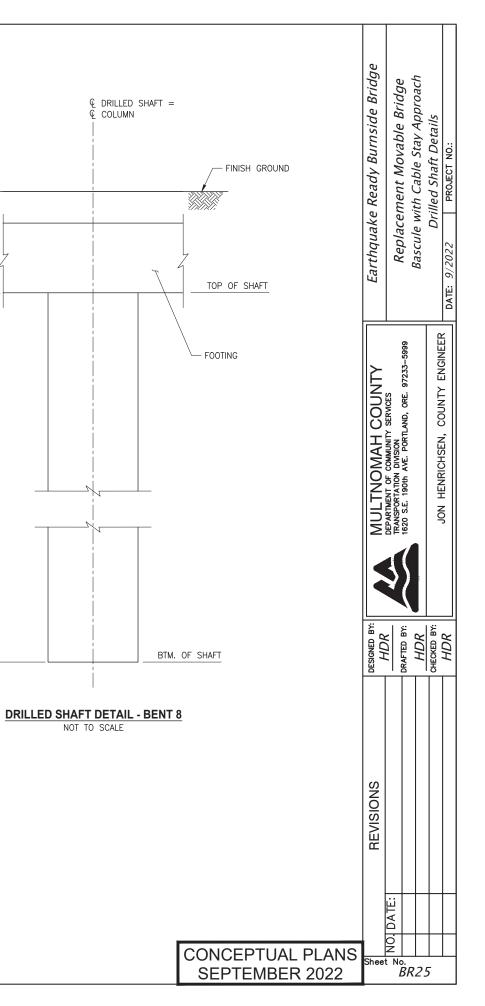

SECTION A SCALE: 1" = 10'-0"


€ BENT 6 47'-0" 23'-6" 23'-6" 8'-83%" 12'-8¾" 14'-9%" 10'-9%" PILE CAP 3'-1¼"-TYP. <u>3'-0"</u> TYP. "EQRB" LINE 124'-0" 10'-0" TYP. 19'-6" TYP. 5'-0" TYP. ĭ ŀĿ 23'-8" TYP. 14'-4" TYP. 23'-0" TYP. 13'-10" TYP. 6 qCONCEPTUAL BENT STARLING




SECTION B SCALE: 1" = 10' - 0"





	SHAFT	NUMBER OF		ELE'	VATIONS (NAVE)88)		SHAFT	CASING
BENT	DIAMETER	SHAFTS	FINISH	ESTIMATED	TOP OF	BOTTOM OF	BOTTOM OF	LENGTH (FT)	LENGTH (FT)
	(FT)	011/11/0	GROUND	ROCK*	SHAFT	CASING	SHAFT		
1	3.00	11	31.52	-26.47	24.52	NA	-42.00	66.52	NA
2	8.00	3	31.50	-33.85	29.50	NA	-65.00	94.50	NA
3	10.00	2	32.02	-41.63	30.02	NA	-65.50	95.52	NA
4	10.00	2	33.67	-43.01	31.67	NA	-62.50	94.17	NA
5	10.00	2	34.97	-57.43	32.97	NA	-74.00	106.97	NA
6	10.00	8	-55.00	-105.00	2.00	-77.50	-126.00	128.00	79.50
7	10.00	8	-55.00	-130.00	2.00	-77.50	-153.00	155.00	79.50
8	10.00	6	32.65	-148.80	15.00	NA	-155.00	170.00	NA
9	8.00	4	48.00	2.79	46.00	NA	-8.00	54.00	NA
10	4.00	9	57.00	14.06	55.00	NA	0.00	55.00	NA

* ESTIMATED ROCK ASSUMED AS TOP OF LOWER TROUTDALE SUBSURFACE LAYER

