

Preliminary Stormwater Drainage Report

Springdale Fire Station Improvements

31727 East Historic Columbia River Highway; Troutdale, OR 97019

For

Corbett Fire District

Regular maintenance and inspection are required on all components of the stormwater system. This plan provides instructions on how to maintain and inspect the system.

Prepared by: Evan Eykelbosch, PE Froelich Engineers 17700 SW Upper Boones Ferry Rd, Suite 115 Portland, OR 97224 Froelich Project Number: 23-C021 Date: October 11, 2024

Contents

I.	Project (Project Overview and Description		
II.	Methodo	blogy	3	
III.	Analysis	5	4	
IV.	Enginee	ring Conclusion	4	
V.	Appendi	ces	5	
Append	dix A:	Vicinity Map	6	
Append	dix B:	Basin Map	7	
Append	dix C:	Assumptions	8	
Append	dix D:	Water Quality Treatment	9	
Append	dix E:	Detention System Sizing Calculations1	0	
Append	dix F:	Conveyance Calculations1	1	
Append	dix G:	Geotechnical Report1	2	
Append	dix H:	Utility Plan / Details1	3	
Append	dix I:	Operations and Maintenance1	4	

I. Project Overview and Description

Existing Conditions

The existing site is located at 31727 East Historic Columbia River Highway (See Appendix A: Vicinity Map). The site is partially developed with a single fire truck garage and parking lot on the southern end of the site and a large undeveloped grass field on the northern half of the site. A retailing wall and a sloped hillside separate the north and south ends of the site. The site drains to the south. Along the southern property line is the East Historic Columbia River Highway, owned by ODOT. Within the street is a public stormwater system. This stormwater main crosses the road just west of our site and discharges into Springdale Creek.

Proposed Conditions

The proposed development includes a new fire truck garage and parking lot. A new retaining wall will be constructed that pushes into the hillside to create sufficient space for the development of the site. Site improvements will include new concrete and asphalt pavements as well as a ramp to allow vehicular access between the upper and lower portions of the site. See Table 1 and Appendix B: Basin Maps.

II. Methodology

Stormwater Requirements

Multnomah County dictates the stormwater requirements for the project site. Multnomah County Code Section 39.6235 requires the Engineer of Record to complete the Stormwater Drainage Control Certificate, which states a design be provided such that "the rate of stormwater runoff attributed to the new/replaced development for a 10-year/24-hour storm event will be no greater than that which existed prior to any development as measured from the property line or from the point of discharge into a water body with the use of the designated system" (See Table 2 below).

In addition, the Multnomah County Design Standards Chapter 5.1.3 states that "the quality of stormwater entering or leaving the ROW after a project shall be equal to or better than the quality of stormwater entering or leaving the ROW before the project." Water Quality Treatment should be designed per the City of Portland's Stormwater Management Manual.

Due to the stormwater system being located within the ODOT right-of-way, ODOT has additional detention requirements for the site. ODOT requires that the post-development 50-year storm peak runoff not exceed the existing 50-year storm peak runoff (See Table 2 below)

Proposed Stormwater System

The proposed development will include a new fire truck garage, a courtyard, and a paved service/parking area. These areas will be collected within a series of trench drains and downspouts. The runoff will be conveyed into a stormwater lift station, where it will be routed into a bioswale for treatment and then into a below-grade detention pipe. Discharge from the pipe will be routed into the public catch basin. The site improvements are limited to Basin A. However, existing runoff from Basin B will also be collected, treated, and detained. See Appendix D: Water Quality Treatment and Appendix E: Detention System Sizing Calculations and Appendix H: Utility Plan/Details.

Stormwater conveyance is designed to accommodate the 50-year stormwater event. See Appendix F: Conveyance Calculations.

Columbia West completed infiltration testing, and it was determined that, due to high groundwater and poor infiltration, infiltration for disposal would not be acceptable. See Appendix G: Geotechnical Report.

III. Analysis

Table 1a:

Pre-Developed Basin

		Are	Total			
Basins	Pervious				Impervious	
	sf	ac	sf	ac	sf	ac
Basin A	1,327	0.030	0	0.000	1,327	0.030
Basin B	6,802	0.156	0	0.000	6,802	0.156

Table 1b:

Existing Conditions Basin

		Are	Total			
Basins	Pervious				Impervious	
	sf	ac	sf	ac	sf	ac
Basin A	0	0.000	1,327	0.030	1,327	0.030
Basin B	2,097	0.048	4,705	0.108	6,802	0.156

Table 1c:

Post-Developed Basin

		Are	Total			
Basins	Pervious				Impervious	
	sf	ac	sf	ac	sf	ac
Basin A	0	0.00	1,327	0.030	1,327	0.030
Basin B	0	0.00	6,802	0.156	6,802	0.156

Table 2: Stormwater Flow Rate Table

Cotohmont/	Peak Flow Rate (cfs) for a 24-hour Storm Event				
	1	0-yr	50-yr		
	Pre	Post	Existing	Post	
Basin A and Basin B	0.09	0.08	0.19	0.12	

 Table 3: Stormwater Conveyance

Peak Flow Rate (cfs) for a 24-hour Storm Event		
10-yr	50-yr	
0.17 cfs	0.22 cfs	

IV. Engineering Conclusion

The proposed design meets and exceeds the requirements for stormwater management set forth by Multnomah County.

V. Appendices

Appendix A: Vicinity Map

Appendix B: Basin Map

EAST HISTORIC COLUMBIA RIVER HIGHWAY (ODOT)

Plotted: 10/9/24 at 9:34pm By: eeykelbosch

SHEET NOTES

1. XXX

FROELICH PROELICH Prind (Bed QR) (Dewr Ch. (B) (Bed QR) (Dewr Ch. (B) (Bed QR) (Dewr Ch.

KEY NOTES

- 1 SAWCUT LINE
- 2 HEAVY CONCRETE
- 3 STANDARD CONCRETE
- 4 RETAINING WALL, PER STRUCTURAL PLANS
- 5 ASPHALT PAVEMENT
- 6 PROPOSED BUILDING PER ARCHITECTURAL PLANS

XX

- 7 ADA PARKING STALL
- 8 WHEEL STOP
- 9 ADA SIGN
- 10 PARKING STALL STRIPING
- 11 GENERATOR, BY OTHERS
- 12 PROPANE TANKS, BY OTHERS

PROPERTY LINE

CONCRETE SIDEWALK

STANDARD ASPHALT PAVEMENT

HEAVY CONCRETE

LAND USE SET

REV	DATE	ISSUE TITLE
PRO	JECT MAN	AGER: EME
DES	IGNER:	EME
DRA	WN BY:	EEYKELBOSCH
PRO	JECT NO:	
DAT	E:	10/11/24
SCA	LE:	AS SHOWN

SHEET TITLE:

E HISTORIC COLUMERA RIVER HIGHWAY

Plotted: 10/9/24 at 9:34pm By: eeykelbosch

SHEET NOTES

- 1. CONTRACTOR MAY STAGE WITHIN LIMITS OF DEMOLITION.
- 2. REMOVE ALL SITE COMPONENTS AND RECYCLE COMPONENTS AS REQUIRED IN THE SPECIFICATIONS.
- 3. GENERAL DEMOLITION PERMIT SHALL BE SECURED BY THE CONTRACTOR.
- ALL TRADE LICENSES AND PERMITS NECESSARY FOR THE PROCUREMENT AND COMPLETION OF THE WORK SHALL BE SECURED BY THE CONTRACTOR PRIOR TO COMMENCING DEMOLITION.
- 5. THE CONTRACTOR SHALL PRESERVE AND PROTECT FROM DAMAGE ALL EXISTING RIGHT-OF-WAY SURVEY MONUMENTATION DURING DEMOLITION. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING AND PAYING FOR THE REPLACEMENT BY A LICENSED SURVEYOR OF ANY DAMAGED OR REMOVED MONUMENTS.
- 6. PROTECT ALL ITEMS ON ADJACENT PROPERTIES AND IN THE RIGHT OF WAY INCLUDING BUT NOT LIMITED TO SIGNAL EQUIPMENT, PARKING METERS, SIDEWALKS, STREET TREES, STREET LIGHTS, CURBS, PAVEMENT AND SIGNS, CONTRACTOR SHALL BE RESPONSIBLE FOR RESTORING ANY DAMAGED ITEMS TO ORIGINAL CONDITION.
- PROTECT STRUCTURES, UTILITIES, SIDEWALKS, AND OTHER FACILITIES IMMEDIATELY ADJACENT TO EXCAVATIONS FROM DAMAGES CAUSED BY SETTLEMENT, LATERAL MOVEMENT, UNDERMINING, WASHOUT AND OTHER HAZARDS.
- 8. SAWCUT STRAIGHT LINES IN SIDEWALK, AS NECESSARY.
- CONTRACTOR IS RESPONSIBLE TO CONTROL DUST AND MUD DURING THE DEMOLITION PERIOD, AND DURING TRANSPORTATION OF DEMOLITION DEBRIS. ALL STREET SURFACES OUTSIDE THE CONSTRUCTION ZONE MUST BE KEPT CLEAN.
- 10. ALL EXPOSED PORTIONS OF UNDERGROUND UTILITIES TO BE ABANDONED SHALL BE PLUGGED PER DETAIL X/CXXX.

③ DEMOLITION KEY NOTES

- 1 SAWCUT
- 2 REMOVE CONCRETE SIDEWALK
- 3 REMOVE ASPHALT PAVEMENT
- 4 REMOVE WHEEL STOP
- 5 REMOVE CURB
- 6 REMOVE SEPTIC TANK
- 7 REMOVE SIGN
- 8 REMOVE EXISTING UNDERGROUND ELECTRICAL SERVICE.
- 9 REMOVE FLAGPOLE
- 10 ---

PROTECTION KEY NOTES

- 30 PROTECT CURB AND SIDEWALK.
- 31 PROTECT CONCRETE DRIVEWAY
- 32 PROTECT UTILITY STRUCTURE
- 33 PROTECT STRUCTURE
- 34 PROTECT UTILITY POLE
- 35 PROTECT EXISTING STORM MAIN
- 36 PROTECT CATCH BASIN
- 37 PROTECT ROOF DRAIN

SHEET LEGEND

- PROPERTY LINE DEMOLITION/WORK LIMITS
- SAWCUT LINE
- REMOVE OR ABANDON UTILITY LINE IN PLACE
- REMOVE TREE

EXISTING GRADE CONTOUR PROPOSED CURB LINE SHOWN FOR REFERENCE

SPRINGDALE FIRE STATION IMPROVEMENTS artz east historic columbia river hwy Troutdale, OK, 5009

> LAND USE SET

SHEET NUMBER:

Appendix C: Assumptions

Santa Barbara Unit Hydrogragh (SBUH) Assumptions:

(used for Water Quality, Flow Control, Conveyance)

Water Quality (WQ) Storm Event =	1.5 in/24-hours per ODOT Hydraulics Manual
2-year Storm Event=	3.0 in/24-hours per ODOT Hydraulics Manual
10-year Storm Event=	4.0 in/24-hours per ODOT Hydraulics Manual
50-year Storm Event=	5.0 in/24-hours per ODOT Hydraulics Manual

Time of Concentration **5.0** minutes

Roughness Coefficient 0.013

Curve Number Assumptions:

Impervious Area =	98	
Pervious Area =	81	Pre-Developed

Figure 14-6a illustrates an on-line treatment facility.

A single treatment and storage capacity facility is an option when both water quality and water quantity must be provided because of receiving water requirements. This application is considered to be an "on-line" facility and in many situations the most cost-effective stormwater management approach. Use the water quality design guidance in this chapter when designing combination facilities. Combination facilities are examples of units that can provide treatment and storage capacity in a single unit. Additional information on combination facilities is discussed in Section 14.10.7. Storage facility design guidance is discussed in **Chapter 12**.

A single treatment and high flow conveyance facility is an option when:

- Water quality must be provided because of receiving water requirements, and
- Regulating the quantity of stormwater is not required.

Appendix D: Water Quality Treatment

Froelich Engineers

Project 23-C012

Springdale Fire Station Improvements

TRAPEZOIDAL CHANNEL FLOW

Bio Swale

□.2'

left slope = 25.00% bottom width = 2.00' right slope = 25.00% channel slope = 1.00% flow = 0.06 cfs channel type: shallow swale Manning's n = 0.250 depth = 0.16' velocity = 0.15 feet/sec flow area = 0.41 sq.ft. surface width = 3.24'

Appendix E: Detention System Sizing Calculations

23-C021_HydroCAD

Prepared by Froelich Engin	eers
HydroCAD® 10.20-2g s/n 1068	8 © 2022 HydroCAD Software Solutions LLC

Event# Storm Type Mode Duration B/B Depth Event Curve AMC Name (hours) (inches) Type IA 24-hr 10-Year 1 Default 24.00 1 4.00 2 2 50-Year Type IA 24-hr Default 24.00 1 5.00 2 Type IA 24-hr 3 WQ Event Default 24.00 2 1 1.50

Rainfall Events Listing

Area Listing (selected nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
4,705	98	Existing Parking (8S)
2,097	81	Existing Pervious (8S)
2,654	98	Existing Roof (6S, 8S)
6,802	98	New/Modified Impervious (6S)
8,129	81	Pre-Developed Pervious (3S)
24,387	91	TOTAL AREA

23-C021_HydroCAD Prepared by Froelich Engineers HydroCAD® 10.20-2g s/n 10688 © 2022 Hydro	Type IA 24-hr 10-Year Rainfall=4.00" Printed 10/10/2024 DCAD Software Solutions LLC Page 4
Time span=0.04 Runoff by Reach routing by Stor-Ind+Tr	-36.00 hrs, dt=0.20 hrs, 181 points SBUH method, Weighted-Q rans method - Pond routing by Stor-Ind method
Subcatchment3S: Pre-Developed	Runoff Area=8,129 sf 0.00% Impervious Runoff Depth=2.12" Tc=5.0 min CN=WQ Runoff=0.09 cfs 1,437 cf
Subcatchment6S: New/Mod Impervious	Runoff Area=8,129 sf 100.00% Impervious Runoff Depth=3.77" Tc=5.0 min CN=WQ Runoff=0.17 cfs 2,551 cf
Subcatchment8S: Existing	Runoff Area=8,129 sf 74.20% Impervious Runoff Depth=3.34" Tc=5.0 min CN=WQ Runoff=0.15 cfs 2,264 cf
Pond 7P: Detention Facility (PIPE)	Peak Elev=11.84' Storage=230 cf Inflow=0.17 cfs 2,551 cf Outflow=0.08 cfs 2,716 cf
Total Runoff Area = 24,387 4	sf Runoff Volume = 6,252 cf Average Runoff Depth = 3.08" 1.93% Pervious = 10,226 sf 58.07% Impervious = 14,161 sf

23-C021_HydroCAD

Type IA 24-hr 10-Year Rainfall=4.00"

Prepared by Froelich Engineers HydroCAD® 10.20-2g s/n 10688 © 2022 HydroCAD Software Solutions LLC Printed 10/10/2024 Page 5

Summary for Subcatchment 3S: Pre-Developed [49] Hint: Tc<2dt may require smaller dt</td> Runoff = 0.09 cfs @ 8.01 hrs, Volume= 1,437 cf, Depth= 2.12" Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr 10-Year Rainfall=4.00" Area (sf) CN Description

	Area (si)	CN	Description						
*	6,802	81	Pre-Develo	ped Pervio	us				
*	1,327	81	Pre-Develo	Pre-Developed Pervious					
	8,129		Weighted A	verage					
	8,129	81	100.00% P	ervious Are	а				
-	Tc Length	Slop	e Velocity	Capacity	Description				
(mi	in) (feet)	(ft/f	t) (ft/sec)	(cfs)					
5	5.0				Direct Entry,				

Subcatchment 3S: Pre-Developed

2,551 cf, Depth= 3.77"

Summary for Subcatchment 6S: New/Mod Impervious

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.17 cfs @ 7.97 hrs, Volume= Routed to Pond 7P : Detention Facility (PIPE)

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr 10-Year Rainfall=4.00"

	Area (sf)	CN	Description		
*	6,802	98	New/Modifi	ed Impervic	ous
*	1,327	98	Existing Ro	of	
	8,129		Weighted A	verage	
	8,129	98	100.00% In	npervious A	Area
To	E Length	Slop	e Velocity	Capacity	Description
(min)) (feet)	(ft/f	t) (ft/sec)	(cfs)	
5.0					Direct Entry,

Subcatchment 6S: New/Mod Impervious

Summary for Subcatchment 8S: Existing

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.15 cfs @ 7.98 hrs, Volume= 2,264

2,264 cf, Depth= 3.34"

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr 10-Year Rainfall=4.00"

	Area (sf)	CN	Description	
*	2,097	81	Existing Pervious	
*	1,327	98	Existing Roof	
*	4,705	98	Existing Parking	
	8,129		Weighted Average	
	2,097	81	25.80% Pervious Area	
	6,032	98	74.20% Impervious Area	
Т	c Length	Slop	e Velocity Capacity Description	
(mir	n) (feet)	(ft/1	t) (ft/sec) (cfs)	
5.	0		Direct Entry,	

Subcatchment 8S: Existing

23-C021_HydroCAD

Type IA 24-hr 10-Year Rainfall=4.00"

Prepared by Froelich Engine	ers
HydroCAD® 10.20-2g s/n 10688	© 2022 HydroCAD Software Solutions LLC

Printed 10/10/2024 Page 8

Summary for Pond 7P: Detention Facility (PIPE)

Inflow Area	a =	8,129 sf,	100.00% Impervious,	Inflow Depth = 3.77"	for 10-Year event
Inflow	=	0.17 cfs @	7.97 hrs, Volume=	2,551 cf	
Outflow	=	0.08 cfs @	8.49 hrs, Volume=	2,716 cf, Atte	n= 53%, Lag= 31.2 min
Primary	=	0.08 cfs @	8.49 hrs, Volume=	2,716 cf	-

Routing by Stor-Ind method, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs / 2 Peak Elev= 11.84' @ 8.49 hrs Surf.Area= 498 sf Storage= 230 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 36.1 min (701.5 - 665.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	9.67'	0 cf	6.00'W x 83.00'L x 4.00'H Field A
			1,992 cf Overall - 513 cf Embedded = 1,478 cf x 0.0010% Voids
#2A	10.17'	392 cf	ADS N-12 30" x 4 Inside #1
			Inside= 30.0"W x 30.0"H => 4.90 sf x 20.00'L = 98.0 cf
			Outside= 36.0"W x 36.0"H => 6.41 sf x 20.00'L = 128.3 cf
		392 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1 #2	Primary Primary	10.00' 12.25'	1.500" Horiz. Orifice/Grate 4.000" Horiz. Orifice/Grate Limited to weir flow at low hea	C= 0.600 C= 0.600 ads

Primary OutFlow Max=0.08 cfs @ 8.49 hrs HW=11.83' (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.08 cfs @ 6.52 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

23-C021_HydroCAD

Type IA 24-hr 10-Year Rainfall=4.00" Printed 10/10/2024

Prepared by Froelich Engineers HydroCAD® 10.20-2g s/n 10688 © 2022 HydroCAD Software Solutions LLC

Page 9

Pond 7P: Detention Facility (PIPE) - Chamber Wizard Field A

Chamber Model = ADS N-12 30" (ADS N-12® Pipe)

Inside= 30.0"W x 30.0"H => 4.90 sf x 20.00'L = 98.0 cf Outside= 36.0"W x 36.0"H => 6.41 sf x 20.00'L = 128.3 cf

4 Chambers/Row x 20.00' Long = 80.00' Row Length +18.0" End Stone x 2 = 83.00' Base Length

1 Rows x 36.0" Wide + 18.0" Side Stone x 2 = 6.00' Base Width

6.0" Stone Base + 36.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

4 Chambers x 98.0 cf = 392.0 cf Chamber Storage 4 Chambers x 128.3 cf = 513.1 cf Displacement

1,991.5 cf Field - 513.1 cf Chambers = 1,478.5 cf Stone x 0.0010% Voids = 0.0 cf Stone Storage

Chamber Storage + Stone Storage = 392.0 cf = 0.009 af Overall Storage Efficiency = 19.6841% Overall System Size = 83.00' x 6.00' x 4.00'

4 Chambers 73.8 cy Field 54.8 cy Stone

Pond 7P: Detention Facility (PIPE)

23-C021_HydroCAD Prepared by Froelich Engineers HydroCAD® 10.20-2g s/n 10688 © 2022 Hydro	<i>Type IA 24-hr 50-Year Rainfall=5.00"</i> Printed 10/10/2024 DCAD Software Solutions LLC Page 11
Time span=0.04 Runoff by Reach routing by Stor-Ind+Tr	-36.00 hrs, dt=0.20 hrs, 181 points SBUH method, Weighted-Q rans method - Pond routing by Stor-Ind method
Subcatchment3S: Pre-Developed	Runoff Area=8,129 sf 0.00% Impervious Runoff Depth=2.99" Tc=5.0 min CN=WQ Runoff=0.13 cfs 2,023 cf
Subcatchment6S: New/Mod Impervious	Runoff Area=8,129 sf 100.00% Impervious Runoff Depth>4.76" Tc=5.0 min CN=WQ Runoff=0.22 cfs 3,227 cf
Subcatchment8S: Existing	Runoff Area=8,129 sf 74.20% Impervious Runoff Depth>4.31" Tc=5.0 min CN=WQ Runoff=0.19 cfs 2,916 cf
Pond 7P: Detention Facility (PIPE)	Peak Elev=12.29' Storage=315 cf Inflow=0.22 cfs 3,227 cf Outflow=0.12 cfs 3,081 cf
Total Runoff Area = 24,387 4	sf Runoff Volume = 8,166 cf Average Runoff Depth = 4.02" 1.93% Pervious = 10,226 sf 58.07% Impervious = 14,161 sf

Summary for Subcatchment 3S: Pre-Developed

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.13 cfs @ 8.00 hrs, Volume= 2,023 cf, Depth= 2.99"

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr 50-Year Rainfall=5.00"

	Area (sf)	CN	Description		
*	6,802	81	Pre-Develo	ped Pervio	us
*	1,327	81	Pre-Develo	ped Perviou	us
	8,129		Weighted A	verage	
	8,129	81	100.00% P	ervious Are	a
Т	c Length	Slop	e Velocity	Capacity	Description
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)	
5.	C				Direct Entry,

Subcatchment 3S: Pre-Developed

Summary for Subcatchment 6S: New/Mod Impervious

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.22 cfs @ 7.97 hrs, Volume= Routed to Pond 7P : Detention Facility (PIPE) 3,227 cf, Depth> 4.76"

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr 50-Year Rainfall=5.00"

	Area (sf)	CN	Description		
*	6,802	98	New/Modifi	ed Impervic	DUS
*	1,327	98	Existing Ro	of	
	8,129		Weighted A	verage	
	8,129	98	100.00% Im	npervious A	Area
To (min)	Length	Slop	e Velocity	Capacity	Description
		(101	(1/300)	(013)	
5.0					Direct Entry,

Subcatchment 6S: New/Mod Impervious

23-C021_HydroCAD

ż

6

8

10

12

14

Type IA 24-hr 50-Year Rainfall=5.00"

Prepared by Froelich Engineers	
HydroCAD® 10.20-2g s/n 10688 © 2022 HydroCAD S	Software Solutions LLC

Printed 10/10/2024 Page 14

Summary for Subcatchment 8S: Existing [49] Hint: Tc<2dt may require smaller dt 0.19 cfs @ 7.97 hrs, Volume= Runoff 2,916 cf, Depth> 4.31" Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr 50-Year Rainfall=5.00" Description Area (sf) CN * 2,097 81 **Existing Pervious Existing Roof** 1,327 98 4,705 **Existing Parking** 98 8,129 Weighted Average 25.80% Pervious Area 2,097 81 74.20% Impervious Area 6,032 98 Capacity Tc Length Slope Velocity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 **Direct Entry**, Subcatchment 8S: Existing Hydrograph Runoff 0.21 0.19 cfs 0.2 Type IA 24-hr 0.19 0.18 50-Year Rainfall=5.00" 0.17 0.16 Runoff Area=8,129 sf 0.15 0.14 Runoff Volume=2,916 cf 0.13 (cfs) Runoff Depth>4.31" 0.12 0.11 Flow Tc=5.0 min 0.1 0.09 CN=WQ 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0-

16 18 20 Time (hours)

20

22

24

26

28

30

32

34

36

23-C021_HydroCAD

Type IA 24-hr 50-Year Rainfall=5.00"

Prepared by Froelich Engine	ers
HydroCAD® 10.20-2g s/n 10688	© 2022 HydroCAD Software Solutions LLC

Printed 10/10/2024 Page 15

Summary for Pond 7P: Detention Facility (PIPE)

Inflow Are	a =	8,129 sf,	100.00% Impervious,	Inflow Depth > 4	.76" for 50-Year event
Inflow	=	0.22 cfs @	7.97 hrs, Volume=	3,227 cf	
Outflow	=	0.12 cfs @	8.30 hrs, Volume=	3,081 cf,	Atten= 44%, Lag= 19.9 min
Primary	=	0.12 cfs @	8.30 hrs, Volume=	3,081 cf	-

Routing by Stor-Ind method, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs / 2 Peak Elev= 12.29' @ 8.24 hrs Surf.Area= 498 sf Storage= 315 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Storage	Storage Description
#1A	9.67'	0 cf	6.00'W x 83.00'L x 4.00'H Field A
			1,992 cf Overall - 513 cf Embedded = 1,478 cf x 0.0010% Voids
#2A	10.17'	392 cf	ADS N-12 30" x 4 Inside #1
			Inside= 30.0"W x 30.0"H => 4.90 sf x 20.00'L = 98.0 cf
			Outside= 36.0"W x 36.0"H => 6.41 sf x 20.00'L = 128.3 cf
		392 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	10.00'	1.500" Horiz. Orifice/Grate C= 0.600
#2	Primary	12.25'	4.000" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.12 cfs @ 8.30 hrs HW=12.29' (Free Discharge)

1=Orifice/Grate (Orifice Controls 0.09 cfs @ 7.28 fps)

-2=Orifice/Grate (Weir Controls 0.03 cfs @ 0.64 fps)

Pond 7P: Detention Facility (PIPE) - Chamber Wizard Field A

Chamber Model = ADS N-12 30" (ADS N-12® Pipe)

Inside= 30.0"W x 30.0"H => 4.90 sf x 20.00'L = 98.0 cf Outside= 36.0"W x 36.0"H => 6.41 sf x 20.00'L = 128.3 cf

4 Chambers/Row x 20.00' Long = 80.00' Row Length +18.0" End Stone x 2 = 83.00' Base Length 1 Rows x 36.0" Wide + 18.0" Side Stone x 2 = 6.00' Base Width 6.0" Stone Base + 36.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

4 Chambers x 98.0 cf = 392.0 cf Chamber Storage 4 Chambers x 128.3 cf = 513.1 cf Displacement

1,991.5 cf Field - 513.1 cf Chambers = 1,478.5 cf Stone x 0.0010% Voids = 0.0 cf Stone Storage

Chamber Storage + Stone Storage = 392.0 cf = 0.009 af Overall Storage Efficiency = 19.6841% Overall System Size = 83.00' x 6.00' x 4.00'

4 Chambers 73.8 cy Field 54.8 cy Stone

Pond 7P: Detention Facility (PIPE)

23-C021_HydroCAD	Type IA 24-hr WQ Event Rainfall=1.50"
Prepared by Froelich Engineers	Printed 10/10/2024
HydroCAD® 10.20-2g s/n 10688 © 2022 Hydro	DCAD Software Solutions LLC Page 18
Time span=0.04 Runoff by Reach routing by Stor-Ind+Tr	-36.00 hrs, dt=0.20 hrs, 181 points SBUH method, Weighted-Q rans method - Pond routing by Stor-Ind method
Subcatchment3S: Pre-Developed	Runoff Area=8,129 sf 0.00% Impervious Runoff Depth=0.31" Tc=5.0 min CN=WQ Runoff=0.01 cfs 213 cf
Subcatchment6S: New/Mod Impervious	Runoff Area=8,129 sf 100.00% Impervious Runoff Depth=1.28" Tc=5.0 min CN=WQ Runoff=0.06 cfs 867 cf
Subcatchment8S: Existing	Runoff Area=8,129 sf 74.20% Impervious Runoff Depth=1.03" Tc=5.0 min CN=WQ Runoff=0.05 cfs 699 cf
Pond 7P: Detention Facility (PIPE)	Peak Elev=10.64' Storage=17 cf Inflow=0.06 cfs 867 cf Outflow=0.05 cfs 1,113 cf
Total Runoff Area = 24,387 4	sf Runoff Volume = 1,779 cf Average Runoff Depth = 0.88" 1.93% Pervious = 10,226 sf 58.07% Impervious = 14,161 sf

Summary for Subcatchment 3S: Pre-Developed

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.01 cfs @ 8.18 hrs, Volume= 213 cf, Depth= 0.31"

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr WQ Event Rainfall=1.50"

	Area (sf)	CN	Description		
*	6,802	81	Pre-Develo	ped Perviou	us
*	1,327	81	Pre-Develo	ped Perviou	us
	8,129		Weighted A	verage	
	8,129	81	100.00% Pe	ervious Are	ea
To (min	c Length) (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description
5.0)				Direct Entry,

Subcatchment 3S: Pre-Developed

23-C021_HydroCAD

Type IA 24-hr WQ Event Rainfall=1.50"

Prepared by Froelich Engineers HydroCAD® 10.20-2g s/n 10688 © 2022 HydroCAD Software Solutions LLC Printed 10/10/2024 Page 20

Summary for Subcatchment 6S: New/Mod Impervious

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.06 cfs @ 7.98 hrs, Volume= Routed to Pond 7P : Detention Facility (PIPE) 867 cf, Depth= 1.28"

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr WQ Event Rainfall=1.50"

	Area (sf)	CN	Description		
*	6,802	98	New/Modifi	ed Impervic	ous
*	1,327	98	Existing Ro	of	
	8,129		Weighted A	verage	
	8,129	98	100.00% Im	npervious A	Area
Т	c Length	Slop	e Velocity	Capacity	Description
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)	
5.)				Direct Entry,

Subcatchment 6S: New/Mod Impervious

Summary for Subcatchment 8S: Existing

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.05 cfs @ 7.98 hrs, Volume= 699

699 cf, Depth= 1.03"

Runoff by SBUH method, Weighted-Q, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs Type IA 24-hr WQ Event Rainfall=1.50"

	Area (sf)	CN	Description				
*	2,097	81	Existing Pervious				
*	1,327	98	Existing Roof				
*	4,705	98	Existing Parking				
	8,129		Weighted Average				
	2,097	81	25.80% Pervious Area				
	6,032	98	74.20% Impervious Area				
T (mir	c Length n) (feet)	Slop (ft/1	e Velocity Capacity Description t) (ft/sec) (cfs)				
5.	0		Direct Entry,				

Subcatchment 8S: Existing

Summary for Pond 7P: Detention Facility (PIPE)

Inflow Are	ea =	8,129 sf,1	00.00% Impervious,	Inflow Depth = 1.28"	for WQ Event event
Inflow	=	0.06 cfs @	7.98 hrs, Volume=	867 cf	
Outflow	=	0.05 cfs @	8.19 hrs, Volume=	1,113 cf, Atte	n= 21%, Lag= 13.1 min
Primary	=	0.05 cfs @	8.19 hrs, Volume=	1,113 cf	-

Routing by Stor-Ind method, Time Span= 0.04-36.04 hrs, dt= 0.20 hrs / 2 Peak Elev= 10.64' @ 8.19 hrs Surf.Area= 498 sf Storage= 17 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 65.0 min (763.1 - 698.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	9.67'	0 cf	6.00'W x 83.00'L x 4.00'H Field A
			1,992 cf Overall - 513 cf Embedded = 1,478 cf x 0.0010% Voids
#2A	10.17'	392 cf	ADS N-12 30" x 4 Inside #1
			Inside= 30.0"W x 30.0"H => 4.90 sf x 20.00'L = 98.0 cf
			Outside= 36.0"W x 36.0"H => 6.41 sf x 20.00'L = 128.3 cf
		392 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	10.00'	1.500" Horiz. Orifice/Grate C= 0.600
#2	Primary	12.25'	4.000" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.05 cfs @ 8.19 hrs HW=10.64' (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.05 cfs @ 3.84 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond 7P: Detention Facility (PIPE) - Chamber Wizard Field A

Chamber Model = ADS N-12 30" (ADS N-12® Pipe)

Inside= 30.0"W x 30.0"H => 4.90 sf x 20.00'L = 98.0 cf Outside= 36.0"W x 36.0"H => 6.41 sf x 20.00'L = 128.3 cf

4 Chambers/Row x 20.00' Long = 80.00' Row Length +18.0" End Stone x 2 = 83.00' Base Length 1 Rows x 36.0" Wide + 18.0" Side Stone x 2 = 6.00' Base Width 6.0" Stone Base + 36.0" Chamber Height + 6.0" Stone Cover = 4.00' Field Height

4 Chambers x 98.0 cf = 392.0 cf Chamber Storage 4 Chambers x 128.3 cf = 513.1 cf Displacement

1,991.5 cf Field - 513.1 cf Chambers = 1,478.5 cf Stone x 0.0010% Voids = 0.0 cf Stone Storage

Chamber Storage + Stone Storage = 392.0 cf = 0.009 af Overall Storage Efficiency = 19.6841% Overall System Size = 83.00' x 6.00' x 4.00'

4 Chambers 73.8 cy Field 54.8 cy Stone

Pond 7P: Detention Facility (PIPE)

Appendix F: Conveyance Calculations

Project 23-C012 Springdale Fire Station Improvements

GRAVITY PIPE FLOW (Chezy-Manning)

```
6-inch Pipe @ 1%
```

velocity = 2.86 fps
flow = 0.56 cfs

diameter = 6.0"
slope = 1.00%
material: ABS, PVC
Manning's n = 0.013
depth of flow = 100.00% of diameter (full)
wetted perimeter = 1.57'
area = 0.20 s.f.
hydraulic radius = 0.13'

Project 23-C012 Springdale Fire Station Improvements

GRAVITY PIPE FLOW (Chezy-Manning)

```
4-inch Pipe @ 1%
```

diameter = 4.0"
slope = 1.00%
material: ABS, PVC
Manning's n = 0.013
depth of flow = 100.00% of diameter (full)
wetted perimeter = 1.05'
area = 0.09 s.f.
hydraulic radius = 0.08'
velocity = 2.18 fps
flow = 0.19 cfs

Appendix G: Geotechnical Report

Report of Geotechnical Engineering Services

Springdale Station

Troutdale, Oregon

March 29, 2024

www.columbiawestengineering.com

Vancouver, Washington • Phone: 360-823-2900 Portland, Oregon • Phone: 971-384-1666 www.columbiawestengineering.com

March 29, 2024

Corbett Fire District #14 36930 Historic Columbia River Highway Corbett, OR 97019

Attn: Dave Flood

Re: Report of Geotechnical Engineering Services Springdale Station 31727 Historic Columbia River Highway Troutdale, Oregon CWE Project: CFD-1-01-1

Columbia West Engineering, Inc. (Columbia West) is pleased to present this report of geotechnical engineering services for the Springdale Station project located in Troutdale, Oregon. Our services were conducted in accordance with our proposal dated January 23, 2024.

We appreciate the opportunity to work on the project. Please contact us if you have any questions regarding this document.

Sincerely,

Jason F. Merritt, PE Senior Project Engineer

Signed for

Brett A. Shipton, PE, GE Principal Engineer

cc: Erik Matthews, em architecture llc

JFM:NNP:kat Attachments Document ID: CFD-1-01-1-032924-geor.docx

EXECUTIVE SUMMARY

This executive summary presents the primary geotechnical considerations associated with the Springdale Station project located in Troutdale, Oregon. Our conclusions and recommendations are based on the subsurface information presented in the report and proposed development information provided by the design team. A detailed discussion of the geotechnical considerations summarized here is presented in respective sections of the report.

- The proposed structure can be supported on conventional spread footings bearing on firm, native soil or structural fill overlying firm, native soil.
- Based on the results of our site-specific seismic hazard evaluation, the parameters provided by ASCE 7-16 general response spectrum for Site Class C should be used for the site.
- Although not observed in the borings, undocumented fill may be present at the site, particularly below existing structural elements. All undocumented fill beneath proposed improvements should be assessed by Columbia West following demolition when subgrade conditions are exposed.
- Moisture conditioning will be likely be required to use the on-site soil as structural fill. Accordingly, extended dry weather will be required to adequately condition and place the silt as structural fill. It will be difficult, if not impossible, to adequately compact the on-site soil during the rainy season or during prolonged periods of rainfall.
- Based on results of in-situ infiltration testing in one of the borings, on-site stormwater infiltration systems are not feasible at the site.

3.3.2 Soil Conditions

3.3.2.1 Pavement Section

Borings B-1 and B-2 were drilled through a pavement section consisting of 5 inches of AC underlain by 6 inches of aggregate base.

3.3.2.2 Fine-Grained Alluvium

Silt with varying proportions of sand is present below the AC sections (B-1 and B-2) and in the south-facing slope (HA-1). The silt observed in the borings varies from medium stiff to stiff. Laboratory testing indicates the moisture content of native silt ranges from 29 to 38 percent and the fines content (percent passing the U.S. Standard No. 200 sieve) is between 53 and 95 percent. Atterberg limit testing indicates the silt has medium plasticity.

3.3.3 Groundwater

Perched groundwater was observed in borings B-1 and B-2 at depths of 3 and 3.5 feet BGS, respectively. Seeps were observed in boring HA-1 at a depth of approximately 4 feet below top of slope elevation and are likely from surface infiltration. The depth to perched groundwater may fluctuate in response to prolonged rainfall, seasonal changes, changes in surface topography, and other factors not observed during this study. Perched groundwater could be higher than observed in our explorations during the wet season or periods of persistent rainfall.

3.4 INFILTRATION TESTING

Infiltration testing was performed in boring B-2 at a depth of 2.5 feet BGS. Infiltration testing was conducted using the encased falling head method. Infiltration was not observed in the boring. Based on the results of our testing and observations, subsurface disposal of stormwater is not feasible in our opinion.

4.0 DESIGN

4.1 FOUNDATION SUPPORT

4.1.1 General

Provided foundation and floor slab loads are as described in Section 1.0 (Introduction) and the site is prepared as recommended in Section 5.0 (Construction), it is our opinion that the proposed building can be supported on conventional spread footings that bear on undisturbed, native soil or structural fill overlying undisturbed, native soil.

Foundations should not be supported on topsoil, tilled soil, undocumented fill, or loose/disturbed soil. If present below planned footings, these materials should be removed and replaced with structural fill as recommended in this report.

4.1.2 Bearing Capacity

Continuous perimeter wall and isolated spread footings should have minimum widths of 18 and 24 inches, respectively. The base of exterior footings should be at least 18 inches below the lowest adjacent exterior grade. The base of interior footings should bear at least 12 inches below the base of the floor.

Footings bearing on subgrade prepared as recommended in Section 5.1 (Site Preparation) should be sized based on an allowable bearing pressure of 2,500 psf. As the allowable bearing pressure

Appendix H: Utility Plan / Details

Plotted: 10/10/24 at 5:57pm By: eeykelbosch

SHEET NOTES

- 1. PIPE BEDDING AND BACKFILL FOR ALL UTILITIES SHALL BE DONE PER DETAIL X/C5.X.
- 2. STRUCTURES LOCATIONS ARE BASED ON CENTER OF STRUCTURE.

KEY NOTES

1 FIELD VERIFY LOCATION AND IE OF EXISTING CATCH BASIN PRIOR TO CONSTRUCTION.

UTILITY LABEL LEGEND

PIPE LABEL

S=X.XX%

SLOPE (WHERE APPLICABLE)

STRUCTURE TYPE

CALLOUT	DESCRIPTION	DETAIL REF.
BEND	BEND, USE FITTING IF APPLICABLE	\square
BWV	BACKWATER VALVE	
CB	CATCH BASIN	$-\frac{1}{2}$
COTG	CLEANOUT TO GRADE	\bigcirc
CONN	CONNECTION	
DI	DITCH INLET	
FCMH	FLOW CONTROL MANHOLE	
FD	FOUNDATION DRAINAGE POINT OF	CONN.
GV	GATE VALVE	
LSMH	LIFT STATION MANHOLE	
TD	TRENCH DRAIN	
TEE	TEE CONNECTION	
WYE	WYE CONNECTION	

SPRINGDALE FIRE STATION IMPROVEMENTS 31727 EAST HISTORIC COLUMBIA RIVER HWY TROUTDALE, OK, 2019

FROELICH ENGINEERS CIVIL - STRUCTURAL

PREIMINARY PREIMINARY CONSTRUCTION

> LAND USE SET

SHEET NUMBER:

SHEET LEGEND

 CONNECT TO STORM DRAIN/ROOF DRAIN, SEE PLUMBING PLANS FOR CONTINUATION, SIZE AND IE AS NOTED.

 CSS
 CONNECT TO SANITARY SEWER LINE. SEE PLUMBING PLANS FOR CONTINUATION, SIZE AND IE AS NOTED.

 UTILITY CROSSING. PROVIDE 12" MIN.

 UTILITY CROSSING. PROVIDE 12" MIN.

 SCALE
 1 INCH = 10 FEET

 10
 0
 10
 2

)/24 at 5:57pm By: eeykelbosc

- DOWNSPOUT BY OTHERS.

*× *

HARD SURFACE

CAST IRON FRAME AND

COMPACT SUBGRADE

X" OF SUBBASE COURSE

NOTES: 1. - CONSTRUCT CONTRACTION JOINTS AT 15' MAX. SPACING AND AT RAMPS. - CONSTRUCT EXPANSION JOINTS AT 200' MAX. SPACING AT POINTS OF TANGENCY AND AT ENDS OF EACH DRIVEWAY.

PROVIDE MEDIUM TO COARSE BROOM FINISH

DRAWN BY: EEYKELBOSCH PROJECT NO: DATE: 10/11/24 SCALE: AS SHOWN

> SHEET TITLE: DETAILS

Appendix I: Operations and Maintenance

NOT INCLUDED WITH LAND USE