

Multnomah County is creating an earthquake-ready downtown river crossing.

BETTER – SAFER – CONNECTED

October 28, 2020

Urban Design and Aesthetics Working Group (UDAWG) – Meeting #3 Agenda

Project:	Earthquake Ready Burnside Bridge (EQRB)					
Subject:	Urban Design and Aesthetics Working Group					
Date:	Wednesday, October 14, 2020					
Time:	1:00 PM – 5:00 PM					
Location:	WebEx (see email for link)					

WORKING GROUP MEMBERS

Randy Gragg, Executive Director, Portland Parks Foundation Bill Will, Public Works Artist Paddy Tillett, ZGF Chris Herring, Artistic Director, Portland Winter Lights Festival Megan Crosby, Urban Development + Partners Ian Williams, Deadstock Coffee Priscilla Macy, Oregon Outdoor Coalition Izzy Armenta, Oregon Walks Dave Todd, Portland Rose Festival Brian Kimura, Japanese American Museum of Oregon

AGENCY GROUP MEMBERS

Patrick Sweeney, PBOT Teresa Boyle, PBOT Lora Lillard, BPS Hillary Adam, BDS Tate White, PPR Justin Douglas, Prosper Portland Bob Hastings, TriMet Magnus Bernhardt, ODOT

PROJECT TEAM MEMBERS

Megan Neill, Multnomah County Mike Pullen, Multnomah County Heather Catron, HDR Steve Drahota, HDR Cassie Davis, HDR Michael Fitzpatrick, HDR Katy Segura, HDR Jeff Heilman, Parametrix Allison Brown, JLA Carol Mayer-Reed, Mayer/Reed Jeramie Shane, Mayer/Reed Josh Carlson, Mayer/Reed Anne Monnier, KPFF

Multnomah County is creating an earthquake-ready downtown river crossing.

BETTER – SAFER – CONNECTED

<u>October 28, 2020</u>

Purpose:

The purpose of the UDAWG is to serve as a technical resource body to the CTF for urban design and aesthetics by:

- Providing informed insights and opinions on the visual features for each type selection option
- Recommending measures to enhance aesthetic opportunities or mitigate potential visual impacts
- Representing urban design and aesthetic interests
- Reflecting the character of Portland by suggesting place-making opportunities

Outcomes:

The outcomes for the UDAWG group are to:

- Inform a set of feasible bridge type options for the CTF's consideration
- Inform a project-specific Visual Performance Standard for use during the Type Selection and Final Design phases
- Recommend visual and aesthetic evaluation criteria for consideration by the CTF

Agenda:

Multnomah County is creating an earthquake-ready downtown river crossing.

BETTER - SAFER - CONNECTED

October 28, 2020

Time	Session	Lead		
12:45 p.m.	 Early Arrivals WebEx meeting platform will be available for folks that want to join early and test computer functions before meeting start 	Katy Segura		
1:00 p.m. (20 min)	 Welcome, Intros, Pre-Meeting Info, and General Comments Introductions Pre-mtg information Purpose and Outcomes Meeting Objectives Project Update General Comments 	Allison Brown		
1:20 p.m. (60 min)	 Key Distillations from Mtgs 1 and 2 Acceptance of UDAWG's Recommended Key Themes: Portland Values Characteristics of Portland Physical Connectivity Visual and Experiential Connectivity Relationship to River Bridge Site & Location 	Allison Brown / Carol Mayer-Reed		
2:20 p.m. (90 min)	 Menu of Bridge Types Type Selection Process Similar Bridge Type Selection Experiences Menu of Bridge Types Site Context Range of Movable Bridge Types Range of Fixed Approach Bridge Types 	Steve Drahota / Michael Fitzpatrick		
3:50 p.m. (10 min)	Break			
4:00 p.m. (50 min)	 Burnside Bridge Aspirations and Opportunities CTF perspectives Desired Bridge Experiences Bridge Design Opportunities Urban Design Opportunities 	Allison Brown / Carol Mayer-Reed		
4:50 p.m.	 Next Steps and Closing Remarks UDAWG Mtg#4: Menu of Bridge Type (Refinement) 	Allison Brown / Steve Drahota		

Urban Design and Aesthetics Working Group Mtg #3

Attendees join meeting via WebEx link in calendar invite

Department of Community Services Transportation Division

October 28, 2020

Using WebEx participation features

For WebEx tech support call or email Katy Segura: (503) 423-3709 Katy.Segura@hdrinc.com

Agenda

- 1. Welcome, Introductions, and Pre-Meeting Info
- 2. Key Distillations from UDAWG Mtgs #1 and #2
- 3. Menu of Bridge Types
 - Break -
- 4. Burnside Bridge Aspirations & Opportunities
- 5. Next Steps and Closing Remarks

Pre-meeting Information Packet

Content

Online UDAWG Library:

https://multco.us/earthquake-ready-burnside-bridge/urban-design-and-aesthetics-working-group

UDAWG Meeting #3 Materials:

- UDAWG Mtgs #1 and 2 "What we Heard" Summary Memo
- UDAWG Mtg #2 Notes
- UDAWG Mtg #3 Agenda
- UDAWG Mtg #3 Presentation

Urban Design & Aesthetics Working Group

UDAWG Purpose and Outcome

Purpose: To serve as a technical resource to the Community Task Force (CTF) for:

- Insights and opinions on the visual features
- Measures to enhance aesthetic enhancing opportunities or mitigate potential visual impacts
- Urban design and aesthetic interests
- Place-making opportunities that reflect character of Portland

Outcomes: To provide input on the following products for the CTF's consideration:

- A set of feasible bridge type options
- A project-specific Visual Design Guidelines
- Recommendations for visual and aesthetic evaluation criteria

UDAWG Meeting Objectives

General Focus

	UDAWG Meeting Number and Date								
	#1	#2	#3	#4	#5	#6	#7	#8	#9
	(9/30)	(10/14)	(10/28)	(11/4)	(11/18)	(12/2)	(12/16)	(3/10)	(6/2)
Character of Portland and the									
Burnside Bridge									
Visual Design Principles									
Visual Design Guidelines									
Technical Design Criteria									
Menu of Bridge Types					/				
Range of Feasible Bridge Types									
Evaluation Criteria Topic(s)									
Evaluation Measures							3		
Input on CTF's Eval Criteria									
Input on CTF's Rec Bridge Type									
			1						

We are HERE

Project Update

Key Activities

- Community Task Force (CTF) Meetings
 - Past: Oct 26th (Interests and Values)
 - Future: Nov 9th & 23rd (Selection Criteria Topics; Menu of Bridge Types)
- Working / Focus Groups
 - Bridge and Seismic Working Group Mtg #1 (Oct 23rd)
 - Eastbank Esplanade connection options (ongoing)
- Final Design Request for Proposal (RFP)

GENERAL COMMENTS

Prior Meeting Summary: What We Heard

What we heard ... Key Themes

- Portland Values
- Characteristics of Portland
- Physical Connectivity
- Visual and Experiential Connectivity
- Relationship to River
- Bridge Site & Location

Portland Values

- Optimistic future; a growing & enduring city
- Resilient
- City is accessible to everyone
- Citizens are free to express themselves
- Honor traditions while looking forward
- Authentic place that strives to demonstrate its values & quality of life
- Known for leadership in land use, transportation, urban design, public spaces & sustainability

Characteristics of Portland

- Portland appears to be subtle & selfassured, rather than audacious
- Experience is about discovery & the urban realm rather than large-scaled landmarks
- Significance of the river: a defining feature in a city that has reclaimed its river & waterfront

- A collection of different bridge types; a "City of Bridges"
- A city of distinct neighborhoods

Physical Connectivity

- East to west for all modes
- Bridge to ground at bridgeheads, Eastbank Esplanade & Waterfront Park
- Multi-modal is important: emergency, pedestrians, cyclists, motorists, & transit users
- Bridge to river
- Equal access

Visual and Experiential Connectivity

- Existing expansive, 360-degree panorama of cityscape
- Open & transparent views convey sense of community
- A gathering place; occasionally used as civic space
- Unpleasant spaces below deck on both sides & perceptions of safety
- Bridge is located at a curve in the river, enabling long views to north & south
- Perceptions of personal safety relative to traffic and speed of traffic
- Bridgehead architecture and park trees as enframement devices
- Series of city landmarks & bridges surrounding it

- View of linear parks and down to the river surface
- Views & sounds of freeway system
- Enframed view to West Hills

Relationship to River

- River history; a "River City"
- History of navigation since time immemorial
- Transportation
- Commerce
- Fishing
- Recreation

- Qualities of the river conveys a mood
- Concern for river ecology, fisheries & clean water
- Upland urban development patterns
 based on river
- Fluid dynamics of river: bridge piers as a necessary cut-water device

Bridge Site & Location

- Episodic sequence of unfolding spaces
- Contrasts of east & west neighborhoods
- Unifying urban characteristics
- Context of city landmarks immediately surrounding it:
 - Oregon sign, US Bank Tower (Big Pink), OCC Towers, Moda Center, The Yard
- Context of City bridges as distinctive landmarks:
 - Fremont, Broadway, Steel, Morrison, Hawthorne, Marquam, Tilikum

Type Selection Process

Bridge Type Selection Phase

Type Selection Process

Goals and Objectives Stakeholder Input Agency Collaboration

Physical Constraints Design Criteria Context Sensitivity Budget Compliance Environmental Stewardship Agency / Stakeholder Input Criteria & Measures Development

Range of Feasible Options

Evaluation and

Screening

Preferred Bridge Type Preliminary Design Quantities Cost Estimate Construction Risk

Bridge Type Selection Phase

Information to CTF

Similar Bridge Type Selection Experiences

New Johnson Street Bridge

Woodrow Wilson Bridge

Jacques Chaban-Delmas Lift Bridge

Sarah Mildred Long Bridge

Sellwood Bridge

Hoover Dam Bridge

Dagu Bridge

Twin River Bridge

Idaho Trail Bridge

Shoemaker Bridge

Type Study Examples

Type Study Examples - Initial Concepts

Type Study Examples - Initial Concepts

Type Study Examples - Initial Concepts

Type Study Examples - Final Design

Type Study Examples – Final Constructed Outcome

Burnside Bridge Timeline

Type Study Examples

CONSTRUCTED SOLUTION PRELIM. DESIGN DETAILS NEPA / TYPE SELECTION CONSTRUCTION 2025 2028 2022 2023 2024 2027 2020 2021 2026 **FINAL DESIGN**

TYPE SELECTION CONCEPT

FINAL DESIGN DETAILS

Existing Willamette River Bridges

1 Fremont Bridge

④ Burnside Bridge

Marquam Bridge

2 Broadway Bridge

5 Morrison Bridge

8 Tilikum Crossing

3 Steel Bridge

6 Hawthorne Bridge

9 Ross Island Bridge

Long-span Alternative

"Three bridges in one"

Long-span Alternative

Bridge Width Transitions

Long-span Alternative

Superstructure Influence on Views

WEST

Representative Bridge Types

Representative Bridge Types

BRIDGE TYPE OPTION: Tied Arch examples

Siuslaw River Bridge, Oregon

Tacony-Palmyra Bridge, Pennsylvania

Gateway Bridge, Michigan

Hastings Bridge, Minnesota

BRIDGE TYPE OPTION: Cable Stayed examples

Cooper River Bridge, South Carolina

Indian River Inlet Bridge, Delaware

BRIDGE TYPE OPTION: Through Truss examples

Chongging Expressway Bridge, China

Main Street Bridge, Florida

Triborough (Harlem River) Bridge, New York Tower Bridge, CA

Broadway Bridge, Oregon

Hawthorne Bridge, Oregon

MOVABLE SPAN: Bascule examples

South Park Bridge, Washington

MOVABLE SPAN: Vertical Lift examples

Teregganu Bridge, Malaysia

Fore River Bridge, Massachusetts

Pont Jacques Chaban, Delmas

Manchester Millenium Bridge, England

Woodrow Wilson Bridge, Maryland

47

New Johnson St. Bridge, Canada

Movable Bridge Types

Bascule Bridge Types

MOVABLE SPAN: Bascule examples

South Park Bridge, Washington

Harbor Bridge, Spain

New Johnson St. Bridge, Canada

Woodrow Wilson Bridge, Maryland

Bascule Movable Bridge Types:

- Bascule Bridge Fundamentals
- Technically Feasible Types
- Technically "Challenged" Types

Bascule Type Application for the Burnside Bridge: "Delta Pier"

Key Attributes:

- Bascule Span:
 - "Split-leaf" (2 halves) type due to opening length
 - $\circ~$ Can be above or below deck
- Pier Locations: West and east of the existing piers to avoid foundation conflicts
- Pier Sizing: Needs to accommodate counterweight movements and machine room
- Trunnion Placement: Towards main channel span to reduce bascule leaf length
- Vessel Collision Protection: Likely requires a fender or dolphin system for large ships

Bascule Type Application for the Burnside Bridge: "Delta Pier"

Technically Feasible Types: Traditional Twin-Leaf Bascule

Existing Burnside Bridge

Technically Feasible Types: Rustic Bascule Styles

Technically Feasible Types: Tower-framed Bascule Style

Technically Feasible Types: Modern Bascule Styles

Technically Feasible:

- Support struts / cables must be:
 - o Sized for large loads
 - Placed near exteriors of roadway deck

Technically Challenged:

 May need twin bridges due to the larger Burnside Bridge width

Technically Feasible Types – Modern Bascule Styles

Technically Feasible:

- Bascule shape (partially open pit)
- Limited ability to suspend bike/ped walkway below deck

Technical Challenge:

 175' Single leaf (vs ~300' needed for Burnside)

Technically Feasible Types: Delta Pier Bascule

Technically Feasible:

• Bascule shape (Delta pier shape)

Technical Challenge:

- Split-leaf (each bascule side split in half):
 - Bifurcates the into roadway into narrower twin pieces, limiting flexibility for future lane alterations
 - Increases permit risk via a larger bridge footprint
 - Results in twice the mechanical and electrical equipment to construct, operate, and maintain

Technically **Challenged** Types: Rotating (aka, "Swing") Bridge

Why?

- Requires more in-river piers or a larger turret on each side of the main navigation channel
- Expensive to construct, operate, and maintain
- Less safe than lift or bascule due to large motions over the river
- Longer opening times:
 - To clear on-bridge and in-river users
 - $\circ~$ To rotate open and to close

Technically Challenged Types: Unique Movements - 1

Why?

- Unproven response in high seismic zones
- Requires more structure and mechanical equipment to achieve the same function
- Expensive to construct, operate, and maintain
- Less safe than traditional lift or bascule types
- Generally longer operating times
- Generally used for smaller-scaled bridges

Technically Challenged Types: Unique Movements - 2

Why?

- Requires more structure and mechanical equipment to achieve the same function
- Unproven response in high seismic zones
- Expensive to construct, operate, and maintain
- Less safe than traditional lift or bascule types
- Generally longer operating times
- Generally used for smaller-scaled bridges

Lift Bridge Types

Fore River Bridge, Massachusetts

Pont Jacques Chaban, Delmas

Manchester Millenium Bridge, England

Lift Movable Bridge Types:

- Lift Bridge Fundamentals
- Technically Feasible Types
- Technically "Challenged" Types

Lift Type Application for the Burnside Bridge

Key Attributes:

- Lift Span: Can be above or below deck
- Pier Locations: West and east of the existing piers to avoid foundation conflicts
- Pier Sizing: Needs to accommodate counterweight movements, machine room, and stairs
- Sheaves Placement: Towards main channel span to raise span

EARTHQUAKE READY

Lift Type Application for the Burnside Bridge

Seismic Loading Points

= seismic loading directions

Tower Types: Single Tower versus Split Towers

Single Tower

Split Tower

Tower Exterior: a key Design Element

Lift Span Type

Burnside Bridge Cross Section of Lift Span (Below deck option)

Technically Feasible Lift Types: Modern Truss Tower Style

Chelsea St Bridge, Massachusetts

Movable Bridge Span

Technically Feasible Lift Types: Individual Tower Style

Technically Feasible Lift Types: Individual Tower Style

Technically Challenged Lift Types: Slender Steel Truss Towers

Why?

• Seismic resiliency requires a much more robust structural system

Technically Challenged Lift Types: Unrestrained cable lifting mechanisms

Why?

- Seismic resiliency requires a much more restrained structural system
- Bifurcates the into roadway into narrower twin pieces, limiting flexibility for future lane alterations
- Increases permit risk via a larger bridge footprint

Fixed Approach Bridge Types

BRIDGE TYPE OPTION: Tied Arch examples

Gateway Bridge Michigan

Hastings Bridge Minnesota

BRIDGE TYPE OPTION: Cable Stayed examples

BRIDGE TYPE OPTION: Through Truss examples

Cooper River Bridge, South Carolina

Triborough (Harlem River) Bridge, New York Tower Bridge, CA

Broadway Bridge Oregon

Fixed Approach Bridge Types

- Tied Arch
- Truss
- Cables Stayed

- Extradosed
- Suspension
- "Other"

Fixed Approach Bridge Types

Bridge Minnesota

Gateway Bridge, Michigan

Torikai Ohas Bridge, Japan

Siuslaw River Bridge, Oregon

Tacony-Palmyra Bridge, Pennsylvania

Study Type: **Tied Arch**

Bascule + Tied Arch

Lift + Tied Arch

Technically Feasible Tied Arch Types: Conventional Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Height variability (by up to 45' on east)
- Offers a variety of shapes and styles
- Arch Height:~85' (west approach) and ~130' tall (east approach)

Key Technical Trade-offs:

- Impacts on views / openness
- May require cross-bracing

Technically Feasible Tied Arch Types: Conventional Style (Network cable)

Technically Feasible Tied Arch Types: Conventional Style (Open Rib)

Technically Feasible Tied Arch Types: Inclined and Cable Stiffened Style

Technically Challenged Tied Arch Types: Single Arch Rib Alignment

Why?

- Bifurcates the roadway into narrower pieces, limiting flexibility for future lane alterations
- For west approach at Naito Parkway, this requires more superstructure depth, causing insufficient vertical clearances below deck
- Subject to material type, increases seismic demands requiring larger in-water foundations
- Constructability challenges over I-5/I-84/UPRR

Fixed Approach Bridge Types

Main Street Bridge, Florida

Broadway Bridge, Oregon

Hawthorne Bridge, Oregon

Study Type: **Truss**

Bascule + Truss

Lift + Truss

Technically Feasible Truss Types: Conventional Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Cost effective
- Offers a variety of truss shapes
- Truss Height: ~65' (west approach) and ~80' tall (east approach)

Key Technical Trade-offs:

- Impacts on views / openness
- Requires cross-framing (i.e., truss roof)

Technically Feasible Truss Types: Conventional Style

Technically Challenged Truss Types: Circular and Deck Truss Styles

Why for Circular?

- Unproven for seismic resiliency
- Expensive to construct and maintain
- Generally used for smaller-scaled bridges

Why for Deck Truss?

 Insufficient vertical clearances below deck (Waterfront Park and I-5/I-84/UPRR)

Fixed Approach Bridge Types

Indian River Inlet Bridge, Delaware

Chongqing Expressway Bridge, China

Cooper River Bridge, South Carolina

Tilikum Crossing Bridge, Oregon

Study Type: Cable Stayed

Bascule + Cable Stayed

Lift + Cable Stayed

Cable Stayed Types: Multiple Tower and Cable Arrangement Styles

Technically Feasible Cable Stayed Types: Conventional "Goalpost" Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Cost effective
- Offers a variety of cable stay shapes
- Tower Height: ~85' (west approach) and ~130' tall (east approach)

Key Technical Trade-offs:

- Impacts on views / openness, especially on east side adjacent to The Yard building
- West Approach towers needs to be located within Waterfront Park

Why?

- Bifurcates the roadway into narrower pieces, limiting flexibility for future lane alterations
- Requires a deeper superstructure, resulting in insufficient vertical clearances at Naito Parkway
- Subject to material type, increases seismic demands requiring larger in-water foundations
- Constructability challenges over I-5/I-84/UPRR

Fixed Approach Bridge Types

Study Type: Extradosed

Bascule + Extradosed

Technically Feasible Extradosed Types: Conventional "Goalpost" Style

Key Technical Attributes:

- Proven reliability in a seismic event
- Offers a variety of tower shapes and cable patterns (similar to Cable Stayed option)
- Tower Height: ~50' (west approach) and ~80' tall (east approach)

Key Technical Trade-offs:

- Heavier bridge requires larger foundations
- West Approach tower needs to be located within Waterfront Park
- Requires a deeper superstructure, causing insufficient vertical clearances below deck at Naito Parkway

Fixed Approach Bridge Types

Study Type: Suspension (including Self-anchored)

Bascule + Suspension (Conventional or Self-anchored)

Lift + Suspension (Conventional or Self-anchored)

Technically Challenged Suspension Type: Conventional In-ground Anchored Style

Key Technical Attributes:

- Suspension cables are anchored into the ground via "anchorage houses" or supports
- Tower Height: ~100' (west approach) and ~150' tall (east approach)

Key Technical Trade-offs:

- East anchorage placed in geotechnical hazard zone, requiring more mitigation
- Larger right of way impacts
- Uneconomical span lengths

Technically Challenged Suspension Type: Self-anchored Style

Key Technical Attributes:

- Utilizes lift towers to support approach spans
- Tower Height: ~100' (west approach) and ~150' tall (east approach)

Key Technical Trade-offs:

- Requires entire bridge to be supported by falsework during construction
- Expensive to construct

Fixed Approach Bridge Types

Study Type: "Other"

Technically Challenged "Other" Types: Wave Frame and Sail Blade Girder Types

Key Technical Attributes:

- Hybrid of truss, girder, and cable-supported structural elements
- Designed for slenderness and transparency
- Generally used for smaller-scaled bridges

Key Technical Trade-offs:

- Unproven seismic resiliency
- Will likely need more girder lines due to the bridge width
- Expensive to fabricate, construct, and maintain

10 Minute Break

What should the bridge achieve?

GROUP DISCUSSION (PLEASE NO WEBEX CHATS)

CTF Initial Interests Discussion

Meeting #18 (Oct 26, 2020)

- Reliable for earthquake response and resiliency
- Connectivity for all users
- Elegant, light, and transparent; visually unobtrusive
- Visuals/Aesthetics fits with urban environment
- Fits into Portland culture and values
- Attractive place to travel and convene
- Leads to community gathering and enjoyment; Draws people
- Safe and comfortable

- Recognizes and preserves history
- Integrates into east and west neighborhoods; "A neighborhood bridge"
- Unresolved discussions about what iconic means to Portland
- Mixed opinions on symmetry vs. asymmetry

Desired Bridge Experience

Question: How might a large structure take on elements of human scale?

Bridge Design Opportunities

Question: What would make a new bridge iconic for Portland? Question: What would make this Portland's "signature bridge" or a landmark? Question: How should "Engineering as an art form" be expressed?

Urban Design Opportunities

Question: What changes in the urban fabric might be needed to accommodate this new bridge?

Next Steps

Proposed Meeting Sequence

- **Proposed Meeting Dates and Durations:**
 - Mtg #4 (2 hrs) Wed 11/4/20
 - Key Topics: Menu of Bridge Types (Refinement)
 - Mtg #5 (2 hrs) Wed 11/18/20
 - Key Topics: Range of Feasible Bridge Types; Visual Design Guidelines; Type Selection Evaluation Topics
 - Mtg #6 (2 hrs) Wed 12/2/20
 - Mtg #7 (2 hrs) Wed 12/16/20
 - Mtg #8 (2 hrs) Wed 3/10/21
 - Mtg #9 (2 hrs) Wed 6/2/21

Thank you!

Bridge Design Fundamentals

Bridge Terminology

LONGITUDINAL ELEV.

TRANSVERSE ELEV.

ARCH BRIDGE

CANTILEVER

TOWER

FLOOP PEAM

STEEL BOX

EDGE GIRDER

Bridge Design Fundamentals

Flow of Bridge Forces

